
i Orta Entered) DI -. O
T ION PAGE 59KR 0PLE-% OX

A D-A 204 439 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

5. TYPE OF REPORT & PERIOD COVERED

Ada Compiler Validation Summary Report: SoftTech 8 July 1988 to 8 July 1988
Inc., Ada 86, Version 3.21, VAX 11/780-11/785 (Host) to 6S. PERFORMINGbDRG. REPORT NUMBER
Intel iApX 80186 (Target).

7. AUTHOR(S) S. CONTRACT OR GRANT NUMBER(s)
National Bureau of Standards
Gaithersburg, MD

0. PERFORMING ORGANIZATION AND AOORESS 10. PROGRAM ELEMENT. PROJECT. TASK

National Bureau of Standards AE OKUI UBR

Gaithersburg, IM

11. CONTROLLING OFFICE NAME AND ADDRESS1.REOTDE
Ada Joint Program Office
United States Department of Defense1. UtRt
Washington, DC 2D301-3081

14. MONITORING AGENCY NAME & ADDRESS(Ifdiffoemnt from Controlling Office) 15. SECURITY CLASS (ofrhis ritport)

NatinalBureu o Stadars LNCLASSIFIED
Natinal ureu ofStadard1i8. EE5[ASSIFICATION/DOWNGRADING

Gaithersburg, MD SEDU N/

16. DISTRIBUTION STATEMENT (of thts Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract enteredin BlockO 20If different from Report)

UNCLASSIFIED

D I

19. KEYWORDS (Continue on reverse side if necessary and identify by block number) H

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ASBST RAC T (Continue on reverse side if necessary and identify by block number)

Ada 86, Version 3.21, National Bureau of Standards, VAX 11/780-11/785 under VAX/VIMS,

Version 4.7 (Host) to Intel iAPX 80186 under Bare machine (Target), ACVG 1.9.

DD 101" 1473 EDITION OF I NOV 65 IS OBSOLETE
I JAN 72 S/N 0102-LF-014-6601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Enreredj

89 2 6 0%

AVF Ccntrol Number: N88"VOF535.2

Ada caopiler
VALIDATION SURY REPEUF:

Certificate Number: 88070881.09148Sof tTech, Inc.
Ada 86, Version 3.21

VAX 11/780 - 11/785 Host and Intel iAPX 80186 Target

Completion of On-Site Testing:
July 8, 1988

Prepared By:
Software Standards Validation Grop

Institute for Cmputer Sciences and Technology
National Bureau of Standards

Building 225, Room A266
Gaitbersbug, Maryland 20899

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington, D.C. 20301-3081

Ada cmpiler Validation Summary Report:

Compiler Name: Ada 86, Version 3.21

Certificate NUmber: 880708S1.09148

Host: Target:
VAX 11/780 - 11/785 urger Intel iAPX 80186 urder
VA , Bare machine
Version 4.7

Testing Capleted July 8, 1988, using ACVC 1.9

Ths report has been reviewed and is approved.

Dr. David K. Jeff
Chief, Information Systems
Engineering Division
National Bureau of Stardards
Gaithersburg, MD 20899

M~a validation Organization
Dr. John F. Kramer
Institute for Defense Analyses
Alexandria, VA 22311

Ada Joint Program Office
Virginia L. Castor
Director
Department of Defense
Washington DC 20301

TABLE OF OU1T!NIS

CHAPTER 1 INI00C=10

1.1 PURPOSE OF MM VALIAQTN S24MAWR REFC 1-2
1.2 USE OF THIS VALIDATION SUMARY R. 1-2
1.3 CES 1-3
1. 4 M"nflITION OF TEEMS 1-3
1.5 AC'JC TEST CASSES 1-4

CAPTER 2 ONFIGURATION ITFOATI

2.1 CNFI UATION TESTED 2-1
2.2 TTIC CARACTISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESTS... 3-1
3.2 SUMARY OF TTRESUL i BY CASS. 3-1
3.3 SM RY OF TEST RESULTS BY aAPITR.3-2
3 4 WrSWAWN TESTS 3-2
3 .5 INAPPLICABLE TESTS........ 3-2
3.6 TEST, PROCESSING, AND EVAIUATION MODIFI CTNS . o 3-4
3.7 ADDITIONAL TESTING IFl O N ICK3-5
3.7.1 Prevalidation 3-5
3.7.2 Test Method 3-5
3.7.3 Test Site 3-6

APPENDIX A CONFOANCE STATMEN

APPENDIX B APPENDIX F OF THE Ada STANDRD

APPENDIX C TEST PARAMETERS Accession For

0 TIG NTIS GRA&I

APPENDIX D WITIH]RAWN TESTS - DTIC TAB 0]
Unannounced 0

6 Justifictio

By--

Distribution/
Ava8ilablhilityF CodsD-

. .. Av I a ,'or

Iis-' U pc

This Validation Summary Report N-V5 describes the extent to which a
specific Ada compiler conforn to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada CQmpiler
Validation Capabilityr- j. An Ada ccmpiler must be implemented
accrding to the Ada Standard, and any implementation-dependent features
ust conform to the reuirements of the Ada Standard. The Ada Standard

must be iplemrented in its entirety, ard nothin can be implemented that
is not in the Standard.)

x Even touhall Cvalidated Ada comipilers conform to the Ada Standard, it
must be understood that some differences do exist between
implementations. The Ada Standard permits some implementation
dependencies-for example, the maximum length of identifiers or the
maximu values of integer types. Other differences between compilers
result from the characteristics of particular operating systems,
hardware, or implementation strategies. All the de ncies observed
during the process of testing this cmpiler are given in this report.

This information in this report is derived fro the test results
produced during validation testing. The validation process includes
submitting a suite of standardized tests, the ACVC, as inputs to an Ada
ccapiler and evaluating the results. T The purpose of validating is to
ensure conformity of the compiler to the Ada Standard by testing that
the compiler properly implements legal language constructs and that it
identifies and rejects illegal language constructs. The testing also
identifies behavior that is implementation dependent but permitted by
the Ada Standard. Six classes of test are used. These tests are
designed to perform checks at campile time, at link time, and during
execution.

"'. /

i-1

1.1 PURE OF 'THIS VALIATON SH46R RE

This VSR documents the results of the validation testing performd on an
Ada compiler. Testing was carried out for the folloding purposes:

To attempt to identify any language cmistructs supported by
the compiler that do not conform to the Ada Standard

To attempt to identify any unsupported language constructs
reqgired by the Ada Stand~ard

To determine that the implementation-depenent behavior is
allowed by the Ada Stanaz

Testing of this compiler was conducted by the National Bureau of
Standards according to policies and procures established by the Ada
Validation organization (AVO). On-site testing was completed July 8,
1988, at SoftTech corporation, Boston, Mass.

1. 2 USE OF THIS VALIDATION SUMMARY PEWOR

Consistent with the national laws of the originating country, the AVO
may make full and free public disclosure of this report. In the United
States, this is provided in accordance with the "Freedo of Information
Act" (5 U.S.C. #552). The results of this validation apply only to
the computers, operating systems, and compiler versions identified in
this report.

The organizations represented on the signature page of this report do
not represent or warrant that all statements set forth in this report
are accurate and complete, or that the subject compiler has no
nonconformities to the Ada Standard other than those presented. Copies
of this report are available to the public fran:

Ada Information Clearinghouse
Ada Joint Program Office
CUSCRE
The Pentagon, Pm 3D-139 (Fern Street)
Washington DC 20301-3081

or fran:

Software Stardards Validation Group
Institute for Ccnputer Sciences and Technology
National Bureau of Standards
Building 225, Room A266
Gaithersburg, Marylard 20899

1-2

Questions regarding this report or the validation test results should be
directed to the AVF listed above or to:

Ada Validation Organization
-Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFNCES

1. Reference Manual for the Ada a Ianuuaqe,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

2. Ada Compiler Validation Procedures and Guidelines. Ada Joint
Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Imlemmyters' Guide.,
December 1986.

1. 4 DEFINITION OF TEIS

ACVC The Ada compiler Validation Capability. The set of Ada
programs that tests the conformity of an Ada compiler to
the Ada programing larguage.

Ada Comnentary An Ada Co1mawtary contains all information relevant to
the point addressed by a comment on the Ada Standard.
These comments are given a unique identification number
having the form AI-&dd.

Ada Standard ANSI/MIL-SrD-1815A, February 1983 and ISO 8652-1987.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. The AVF is responsible for
conducting copiler validations according to procedures
contained in the Ada Cmviler Validation Procedures a
Guidelines.

AVO The Ada Validation Organization. The AVO has oversight
authority over all AVF practices for the purpose of
maintaining a uniform process for validation of Ada
compilers. The AVO provides administrative and
technical support for Ada validations to ensure
consistent practices.

1-3

CoyWiler A processor for the Ada language. In the context of
this report, a cmpiler is any language processor,
including cross-compilers, translators, and
interpreters.

uiled test An ACVC test for which the ompiler generates a result
that demonstrates nonconformity to the Ada Standard.

st The computer on which the ccmpiler resides.

applicable An ACVC test that uses features of the language that a
st coupiler is not required to support or may legitimately

support in a way other than the one expected by the
test.

language The Language Maintenance Panel (iMP) is a oumuittee
t8intenance established by the Ada Board to recommend

interpretations and Panel possible changes to the
ANSI/NIL-STD for Ada.

Passed test An ACIC test for which a ompiler generates the expected

result.

arget The conpter for which a cimpiler generates code.

-est An Ada program that checks a capiler's conformity
regarding a particular feature or a cambination of
features to the Ada Standard. In the context of this
report, the term is used to designate a single test,
which may coaprise one or more files.

Withdrawn An ACVC test found to be incorrect and not used to check
fest conformity to the Ada Standard. A test may be incorrect

because it has an invalid test objective, fails to meet
its test objective, or contains illegal or erroneous use
of the language.

1.5 ACVC TEST CLASSES

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name
identifies the class to which it belongs. Class A, C, D, and E tests
are executable, and special program units are used to report their
results during execution. Class B tests are expected to produce
compilation errors. Class L tests are expected to produce cmilation
or link errors.

Class A tests check that legal Ada programs can be successfully compiled_

and executed. There are no explicit program camponents in a Class A

1-4

test to check semantics. For exanple, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler.
A Class A test is passed if no errors are detected at compile time and
the program executes to produce a PASSED message.

Class B tests check that a ccmpiler detects illegal language usage.
Class B tests are not executable. Each test in this class is ccmpiled
anrl the resulting compilation listing is examined to verify that every
syntax or semantic error in the test is detected. A Class B test is
passed if every illegal construct that it cotains is detected by the
ccpiler.

Class C tests check that legal Ada programs can be correctly coupiled
and executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a
compiler. Since there are no capacity requirements placed on a ccmpiler
by the Ada Standard for some parameters-for example, the number of
identifiers permitted in a cmpilation or the number of units in a
library-a compiler may refuse to compile a Class D test and still be a
conforming compiler. Therefore, if a Class D test fails to compile
because the capacity of the compiler is exceeded, the test is classified
as inapplicable. If a Class D test cxmpiles successfully, it is
self-checking and produces a PASSED or FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE,
PASSED, or FAILED message when it is comnpiled and executed. However,
the Ada Standard permits an implementation to reject programs containing
some features addressed by Class E tests during compilation. Therefore,
a Class E test is passed by a compiler if it is cmpiled successfully
and executeg to produce a PASSED message, or if it is rejected by the
compiler for an allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are ccmpiled separately and execution is
attempted. A Class L test passes if it is rejected at link time-that
is, an attempt to execute the main program must generate an error
message before any declarations in the main program or any units
referenced by the main program are elaborated.

Two library units, the package RERT and the procedure CHECK FILE,
support the self-checking features of the executable tests. The package
REPORT provides the mechanism by which executable tests report PASSED,
FAILED, or NOT APPLICABLE results. It also provides a set of identity
functions used to defeat some ccpiler cptimizations allowed by the Ada
Standard that would circumvent a test objective. The procedure CHECK
FILE is used to check the contents of text files written by some of the
Class C tests for chapter 14 of the Ada Standard. The operation of

1-5

REFVRr and aE= F= is checked by a set of exeoxtable tests. These
tests produce messages that are examined to verify that the units are
operating correctly. If these units are not operating correctly, then
the validation is not attempted.

Te text of the-tests in the ACVC follow onventicns that are intended
to ensure that the tests are reasonably portable withut modification.
For example, the tests make use of only the basic set of 55 daracters,
contain lines with a maximum length of 72 characters, use small nu mric
values, and place features that may not be supported by all
implementations in separate tests. However, same tests ccntain values
that require the test to be customized according to
inplementation-specific values-for example, an illegal file name. A
list of the values used for this validation is provided in Appendix C.

A compiler ust correctly process each of the tests in the suite and
de3onstrate conformity to the Ada Stanrd by either meeting the pass
criteria given for the test or by showing that the test is inapplicable
to the implementation. The applicability of a test to an implementation
is considered each time the implementation is validated. A test that is
inapplicable for one validation is not necessarily inapplicable for a
subsequent validation. Any test that was determined to contain an
illegal language construct or an erronos language ctuct is
withdrawn from the ACVC and, therefore, is not used in testing a
capiler. The tests withdrawn at the time of validation are given in
Appendix D.

1-6

CAPTER~ 2

I IGRATI INE IIII I K

2.1 COIGUAION TESTED

The candidate ccmpilation system for this validation was tested under
the follwing configuration:

Compiler: Ada 86, Version 3.21

ACVC Version: 1.9

Certificate Number: 880708SI.09148

Host Compiter:

Machine: VAX 11/780 - 11/785

Operating Syste: VAX/VS
Version 4.7

Memory Size: 12 megabytes

Target Ccup:ter:

Machine: Intel iAPX 80186

Operating System: Ba machine

Memory Size:

Caimuications Network: DECNET*
Ethernet

*DEwET for this implementation represents the use of VAX 11/780-
11/785 as host.

2-1

2.7 IMLEENATON CHRACTERISTICS

One of the purposes of validating ccmpilers is to deterne the behavior
of a cupiler- in those areas of the Ada Standard that permit
implementations to differ. Class D and E tests specifically check for
such implementation differences. Hawever, tests in other classes also
characterize an implementation. The tests demnstrate the following
characteristics:

- Capacities.

The ccupiler correctly processes tests containing loop
statements nested to 65 levels, block statements nested to 65
levels, and recursive procedures separately ccmpiled as subu.nits
nested to 17 levels. It correctly processes a campilation
containing 723 variables in the same declarative part. (See
test D55A03A..H (8 tests), D56001B, D64005E..G (3 tests), and
D29002K.)

- Universal integer calculations.

An implementation is allowed to reject universal integer
calculations having values that exceed SYSI'D.MAX INr. This
implementation 64 bit integer calculations. (See tests D4AO02A,
D4A02B, D4A04A, and D4A004B.)

- Predefined types.

This implementation supports the additional predefined types
LONGIMSER and LONG FLDAT in the package STANDARD. (See
tests B86001BC and B6001D.)

- Based literals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INr during compilation, or it may
raise NUMERIC-ERROR or CN hPW ERROR during execution. This
implementation raises NUMERICERROR during execution. (See test
E24101A.)

- Expression evaluation.

Apparently all default initialization expressions or record
couponents are evaluated before any value is checked to belong
to a canponent's subtype. (See test C32117A.)

2-2

Assigrments for subtypes are performed with less precision than
the base type. (See test C35712B.)

This implementation uses no extra bits for extra precision.
This implementation uses all extra bits for extra range. (See
test C35903A.)

Sometimes NUMERIC ERROR is raised when an integer literal
operand in a ccaparison or membership test is outside the range
of the base type. (See test C45232A.)

Apparently NUMERIC ERROR is raised when a literal operand in a
fixed-point comparison or membership test is outside the range
of the base type. (See test C45252A.)

Apparently underflow is gradual. (See tests C45524A..Z.)

Rounding.

The method used for rounding to integer is apparently round to
even. (See tests C46012A..Z.)

The method used for rounding to longest integer is apparently
round to even. (See tests C46012A..Z.)

The method used for rounding to integer in static universal real
expressions is apparently round toward zero. (See test C4AO14A.)

Array types.

An implementation is allowed to raise NUMERICERROR or
CONSTRAINTERROR for an array having a 'IE(THI that exceeds
STANDARD. INTEGER ' LAST and/or SYSrTE.MAXINT. For this
implementation:

Declaration of an array type or subtype declaration with more
than SYST .MAX_T components raises NUMERIC_ERROR. (See test
C36003A.)

NUMEIC ERROR is raised when an array type with fRIES' LAST + 2
components is declared. (See test C36202A.)

NUMERIC ERROR is raised when an array type with SYSTM.MAXINT +
2 components is declared. (See test C36202B.)

A packed BOOLEAN array having a 'LENflI exceeding NThEGE'ILAST
raises no exception. (See test C52103X.)

A packed two-dimensional BOOLEAN array with more than

2-3

rNTBGER'rAST cotmPoneits raises 00MMAINTa when the length
of a dimension is calculated and exeeds nIim, LASr. (See
test C52104Y.)

A null array with one dimension of length greater than
INTGER AST may raise NUMERIC R or CMZMM Elr_ either
when declared or assigned. Alternatively, an inple;entaticn may
accept the declaration. Haqever, lengths must match in array
slice assignments. This implementation raises mSnmERROR
when array objects are assigned. (See test E52103Y.)

In assigning one-dimensional array types, the expression appears
to be evaluated in its entirety before CaUSI M ER is
raised when checkinq whether the expression's s&tp is
compatible with the target's subtype. In assigning
two-dimensional array types, the expression does not appear to
be evaluated in its entirety before aUSTRAf ERROR is raised
when checking whether the expression's subqpe is coupatible
with the target's subtype. (See test C52013A.)

- Discriminated types.

During compilation, an implementation is allowe to either
accept or reject an incoplete type with discriminants that is
used in an access type definition with a compatible discriminant
constraint. This imlementation accepts such subtype indications
during compilation. (See test E38104A.)

In assigning record types with disciminants, the expression
appears to be evaluated in its entirety before CwbSImADERROR
is raised when checking whether the expression's subtype is
campatible with the target's subtype. (See test C52013A.)

Aggregates.

In the evaluation of a milti-dimensional aggregate, all choices
appear to be evaluated before checking against the index type.
(See tests C43207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical bounds.
(See test E43212B.)

Not all choices are evaluated before CONSTRAINT ERROR is raised
if a bound in a nonnull range of a nonnull aggregate does not
belong to an index subtype. (See test E43211B.)

- Representation clauses.

2-4

An inplementation might legitimately place restrictions on
representation clauses used by sam of the tests. If a
representation clause is not supported, then the implementation
must reject it.

Enumeration representation clauses containing n oratiguous
values for enumeration types other than character and boolean
types are supported. (See tests C355021..J, C35502M..N, and
A39005F.)

Enumeration representation clauses containirt rxmxliguous
values for character types are supported. (See tests
C35507I..J, C35507M..N, and C55B16A.)

Enumeration representation clauses for boolean types containing
representational values other than (FALSE -> 0, TUE => 1) are
supported. (See tests C35508I..J and C35508M..N.)

Length clauses with SIZE specifications for enumeration types
are supported. (See test A39005B.)

Length clauses with STORAGE SIZE specifications for access types
are supported. (See tests A39005C and C87B62B.)

length clauses with STORAGE SIZE specifications for task types
are supported. (See tests A39005D and C87B62D.)

Length clauses with SMIL specifications are supported. (See
tests A39005E and C87B62C.)

Lerth clauses with SIZE specifications for derived integer
types are supported. (See test C87B62A.)

Pragmas.

The pragma INLINE is supported for procedures. The pragma
INLINE is supported for functions. (See tests LA3004A, LA3004B,
EA3004C, EA3004D, CA3004E, and CA3004F.)

Input/output.

The package SEQUERIMAL_IO cannot be instantiated with
unconstrained array types and record types with discriminants
without defaults. (See tests AE2101C, EE2201D and EE2201E.)

The package DIRECT IO cannot be instantiated with with
unconstrained array tye and rord types with discriminants
without defaults. (See tests AE2101H, EE2401D and EE4201G.)

The director, AJTO, has determined (AI-00332) that every call to

2-5

OPEN and CREATE zmust raise USE ERROR or NAME ERR if file
irprt/outut is riot supported. This iplementation exhibits
this behavior for SEWWM1NIAL_1O, DIRECTI0 and TE_ 10.

- Generics.

Generic subprogram declarations and bodies can ccapiled in
separate cwpilations. (See tests CA1012A and CA2009F.)

Generic package declarations and bodies can be cipiled in
separate copilaticns. (See tests CA2009C, BC3204C, and
BC3205D.)

Generic unit bodies and their subunits can be compiled in
separate ccmpilations. (See test CA3011A.)

2-6

TES IINFM9=C

3.1 TST RESE

Version 1.9 of the ACVC comprises 3122 tests. Men this cmpiler was
tests, 28 tests had been withdrawn because of test errors. The AVF
determined that 412 tests were inapplicable to this implementation. All
inapplicable tests were processed during validaticn testing.
Modifications to the code, processing, or grading for 25 tests were
required to successfully demotestrate the test objective. (See section
3.6.)

The AVF ccncludes that the testing results dwIstrate acceptable
canformity to the Ada Standad.

3.2 S21ARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 105 1048 1454 17 12 46 2682

Inapplicable 5 3 399 0 5 0 412

Withdrawn 3 2 21 0 2 0 28

TOTAL 113 1053 1874 17 19 46 3122

3-1

3.3 SUtM OF TEST RESULTS BY CHAPM

RESU CHAPTER TOL
4___ 5. 8 __2_ U 1 _

Passed 190 498 535 245 165 98 141 327 137 36 234 3 73 2682

Inapplicable 14 74 139 3 0 0 2 0 0 0 0 0 180 412

Withdrawn 2 14 3 0 1 1 2 0 0 0 2 1 2 28

TOTAL 206 586 677 248 166 99 145 327 137 36 236 4 255 3122

3.4 WrTEERAw TESTS

The following 28 tests were withdrawn from ACVC Version 1.9 at the time
of this validation:

B28003A E28005C C34004A C35502P A35902C C35904A
C35904B C35A03E C35A03R C37213H C37213J C37215C
C37215E C37215G C37215H C38102C C41402A C45332A
C45614C E66001D A74106C C85018B C87B04B C1I311B
BC3105A ADIA01A CE2401H CE3208A

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Sane tests do not apply to all compilers because they make use of
features that a ccpiler is not required by the Ada Standard to support.
Others may depend on the result of another test that is either
inapplicable or withdrawn. The applicability of a test to an
implementation is considered each tire a validation is attempted. A
test that is inapplicable for one validation attenpt is not necessarily
inapplicable for a subsequent attempt. For this validation attempt, 412
test were inapplicable for the reasons indicated:

C35702A uses SHORE_FLfOAT which is not supported by this irplementation.

A35801E At the case statement (lines 54-63), the optimizer tries to
identify which of the cases will be done during execution. The
optimizer recognizes that the variable "I" which is of type integer, is

3-2

not initialized and appropriately raises a PROGRAMEra= exception.
NOTE: This test passes without the /OPTIZE option.

A39005G uses a record representaticn clause which is not supported by
this compiler.

The following (14) tests use SiuI-r INrEGE, which is not supported by
this compiler.

C45231B C45304B C45502B C45503B C45504B
C45504E C45611B C45613B C45614B C45631B
C45632B B52004E C55B07B B55BO9D

C45231D requires a macro substitution for any predefined numeric types
other than nURMa, SHORC W L , lCAT, MauEFLAT, and
L=G_FOAT. This coupiler does not support any such types.

C45304A, C45304C and C46014A expect exceptions to be raised as the
result of performing "dead assignments" (assigrments to a variable whose
value is never used in the program).

C45531M, C45531N, C45532M, and C45532N use fine 48-bit fixed-point base
types which are not supported by this compiler.

C455310, C45531P, C455320, and C45532P use coarse 48-bit fixed-point
base types which are not supported by this compiler.

B86001D requires a predefined numeric type other than those defined by
the Ada language in package STANDARD. There is no sud type for this
inplemntation.

C86001F redefines package SYSM, but TE=' 10 is made obsolete by
this new definition in this inplementation and the test cannot be
executed since the package REPORT is dependent on the package 1E'_10.

AE2101C, EE2201D, and EE2201E use instantiations of package
SEUT IAL_1O with unconstrained array types and record types having
discriminants without defaults. These instantiations are rejected by
this compiler.

AE2101H, EE240ID, and EE2401G use instartiations of package DIRECT 10
with unconstrained array types and record types having discriminants
without defaults. These instantiations are rejected by this oxpiler.

The following 174 tests are inapplicable because sequential, text, and
direct access files are not supported.

CE2102C CE2102G..H(2) CE2102K CE2104A..D(4)
CE2105A..B(2) CE2106A..B(2) CE2107A..I(9) CE2108A..D(4)
CE2109A..C(3) CE2110A..C(3) CE2111A..E(5) CE2111G..H(2)
CE2115A..B(2) CE2201A..C(3) CE2201F..G(2) CE2204A..B(2)
CE2208B CE2210A CE2401A..C(3) CE2401E..F(2)

3-3

CE2404A CE2405B CE2406A CE2407A
CE2408A CE2409A CE2410A CE2411A
AE31OIA CE3102B EE3102C CE3103A
CE3104A CE3107A CE3108A.B(2) CE31O9A
CE3110A CE3111A..E(5) CE3112A..B(2) CE3114A..B(2)
CE3115A - CE3203A CE3301A..C(3) CE3302A
CE3305A CE3402A..D(4) CE3403A..C(3) CE3403E..F(2)
CE3404A..C(3) CE3405A..D(4) CE3406A..D(4) CE3407A..C(3)
CE3408A..C(3) CE3409A CE3409C..F(4) CE3410A
CE3410C..F(4) CE3411A CE3412A CE3413A
CE3413C CE3602A..D(4) CE3603A CE3604A
CE3605A..E(5) CE3606A..B(2) CE3704A..B(2) CE3704D..F(3)
CE3704M..O(3) CE3706D CE3706F CE3804A..E(5)
CE3804G CE3804I CE3804K CE3804M
CE3805A..B(2) CE3806A CE3806D..E(2) CE3905A..C(3)
CE3905L CE3906A..C(3) CE3906E..F(2)

The following 201 tests require a floating-point accuracy that exceeds
the maximum of 15 digits supported by this implementation:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

3.6 TEST, PRCESSING, AND EVAIUATION MDIFICATICNS

It is expected that some tests will require modifications of code,
processing, or evaluation in order to ccmpensate for legitimate
inplementation behavior. Modifications are made by the AVF in cases
where legitimate implementation behavior prevents the successful
ccepletion of an (otherwise) applicable test. Examples of such
modifications include: addinq a length clause to alter the default size
of a collection; splitting a Class B test into sub-tests so that all
errors are detected; and confirming that messages produced by an
executable test demonstrate conforming behavior that wasn't anticipated
by the test (such as raising one exception instead of another).

modifications were required for 24 Class B tests.

The following Class B tests were split because syntax errors at one
point resulted in the compiler not detecting other errors in the test:

B2AO03A..C (3 tests) B33201C B33202C B33203C
B33301C B37106A B37201A 837301I B37307B
B38001C B38003A..B B38009A..B B44001A B51001A
B54A01C B54AOIL B95063A BC1008A BC1201L
BC3013A

3-4

C4AO12B requires that a CINAfl1 _M be raised in a cntext where a
MUMC UWR is relivant. on line 35, etc. The test has been evaluated
andrcdd to be graded as passd

3.7 ADDITIONAL TESTIN MATIC

3.7.1 Prevalidation

Prior to validation, a set of test results for ACVC Version 1.9 produced
by the Ada 86 was submitted to the AVF by the applicant for review.
Analysis of these results demonstrated that the compiler successfully
passed all applicable tests, and the coupiler eadhibited the expected
behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the Ada 86 using ACVC Version 1.9 was c=Iucted on-site by a
validation team from the AVF. The configuration consisted of a VAX
11/780 - 11/785 host operating under VAX/VMS, Version 4.7, and an iAPX
80186 target operating under bare machine. The host and target
ccmputers were linked via DECNE].

A magnetic tape containing all tests was taken on-site by the validation
team for processing. Tests that make use of implementation-specific
values were custonized on-site after the magnetic tape was loaded. Tests
requiring modifications during the prevalidatin testing were not
included in their modified form on the magnetic tape. The contents of
the magnetic tape were loaded directly onto the host cxmputer.

After the test files were loaded to disk, the full set of tests was
capiled and linked on the VAX 11/780 - 11/785, and all executable tests
were run on the iAPX 80186. Object files were linked on the host
caipater, and executable images were transferred to the target oamputer
via DECNET. Results were printed from the host camputer, with results
being transferred to the host comapter via MCNET.

The compiler was tested using camiand scripts provided by Sofre,
Incorporated and reviewed by the validation team. The ccapiler was
tested using all default option settings without eception.

Tests were compiled, linked, and wwouted (as appropriate) using a
single host cuiputer and a single target cxmputer. Test output,
compilation listings, and job logs were captured on magnetic tape and
archived at the AVF. The listings examined on-site by the validation
team were also archived.

3-5

3.7.3 Test Site

Testing was oorducted at Sof~xh, InmrpTorated, Boston,Maacuet

ard was ccopleted on July 8, 1988.

3-6

DECATON OF 039aagNCE

A-i

APPENDIX A

DECLARATION OF CONFORMANCE

Compiler Implementer: SofTech Inc.
460 Totten Pond Road

- Waltham, MA 02254

Ada Validation Facility: National Bureau of Standards (NBS)
Institute for Computer Sciences and Technology (ICST)
Software Standards Validation Group
Building 225, Room A266
Gaithersburg, MD 20899-9999

Ada Compiler Validation Capability (ACVC) Version: 1.9

BASE CONFIGURATION(S)

Base Compiler Name: Ada86 Version: 3.21
Host Architecture - ISA: VAX 11/780 - 11/785 OS&VER #: VAX/VMS 4.7
Target Architecture - ISA: Intel IAPX 8086 OS&VER #: (bare machine)

Base Compiler Name: Ada86 Version: 3.21
Host Architecture - ISA: VAX 11/780 - 11/785 OS&VER #: VAX/VMS 4.7
Target Architecture - ISA: Intel IAPX 80186 OS&VER 9: (bare machine)

Base Compiler Name: Ada86 Version: 3.21
Host Architecture - ISA: VAX 11/780 - 11/785 OS&VER 0: VAX/VMS 4.7
Target Architecture - ISA: Intel iAPX 80286 real mode OS&VER 0: (bare machine)

<,ase Compiler Name: Ada86 Version: 3.21
Host Architecture - ISA: VAX 11/780 - 11/785 OS&VER 0: VAX/VMS 4.7
Target Architecture - ISA: Intel iAPX 80286 protected mode

OS&VER 0: (bare machine)

Base Compiler Name: Ada86 Version: 3.21
Host Architecture - ISA: VAX 11/780 - 11/785 OS&VER 0: VAX/VMS 4.7
Target Architecture - ISA: Intel iAPX 80386 compatible real mode

OS&VER 0: (bare machine)

Base Compiler Name: AdaR6 Version: 3.21
Host Architecture - ISA: VAX 11/780 - 11/785 OS&VER #: VAX/VMS 4.7
Target Architecture - ISA: Intel iAPX 80386 compatible protected mode

..-. OS&VER #: (bare machine)

DERIVED COMPILER-REGISTRATION
EQUIVALENT CONFIGURATION(S)

Base Compiler: Name: -Ada86" , Version: 3.21, 1.59, 1.70
Host Architecture - ISA: VAX 700 and 8000 Series OS&VER I: VAX/VMS 4.7
Target Architecture ISA: Intel IAPX 8086- OS&VER 9: (bare machine)
Target Architecture - ISA: Intel IAPX 80186 OS&VER 9: (bare machine)
Target Ar-chitecture.- ISA: Intel IAPX 80286 real mode OS&VER 9: (bare machine)
Target Architecture - ISA:.Intel iAPX 80286 protected OS&VER I.: (bare machine)
Target Architecture - ISA: Intel iAPX 80386 comp real OS&VER #: (bare machine)
Target Architecture - ISA:.Intel..iAPX 80386 comp prot OS&VER #: (bare machine)

Base Compiler Name: Ada86 Version: 3.21, 1.59, 1.70
Host Architecture ISA: MicroVAX II OS&VER 9: MicroVMS 4.7
Target Architecture - ISA: Intel IAPX 8086 OS&VER 9: (bare machine)
Target Architecture - ISA: Intel iAPX 80186 OS&VER #: (bare machine)
Target Architecture - ISA: Intel IAPX 80286 real mode OS&VER #: (bare machine)
Target Architecture ISA: Intel iAPX 80286 protected OS&VER #: (bare machine)
Target Architecture - ISA: Intel iAPX 80386 comp real OS&VER #: (bare machine)
Target Architecture - ISA: Intel IAPX 80386 comp prot OS&VER 9: (bare machine)

Target Arch.................: Ine .P 808 o. po VE :(aemcie

DECLARATION OF CONFORMANCE Ada86 3.21 page 2.

Implementer's Declaration

I, the undersigned, representing SofTech, Inc., have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A
in the compiler(s) listed in this declaration. I declare that the
SofTech Inc. is -the owner on record of the Ada language compiler(s)
listed above Shd, as such, is responsible for maintaining said
compiler(s) in conformance to ANSI-MIL-STD-1815A. All certificates and
registrations for Ada language compiler(s) listed in this declaration
shall be made only in the owner's corporate name.

Implemente's S tgnature/and Title /Mfaw

Implementer's Declaration

Owner's Declaration

I, the undersigned, representing SofTech Inc., take full responsibility
for implementation and maintenance of the Ada compiler(s) listed above,
and agree to the public disclosure of the final Validation Summary
Report. I further agree to continue to comply with the Ada trademark
policy, as defined by the Ada Joint Program Office. I declare that all
of the Ada language compilers listed, and their host/target performance
are in compliance with the Ada Language Standard ANSI/MIL-STD-1815A.
I have reviewed the Validation Summary Report for the compilers(s) and
concur with the contents.

Owne's natre ad TtleDate

W mo

APPENDIX B

IAPPXDEC F OF ME Ada SEANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent
cmnveritions as mentioned in chapter 13 of the Ada Standard, and to
certain allowed restrictions on representation clauses. The
implementation-dependent characteristics of the Ada 86, Version 3.21,
are described in the following sections which discuss tcpics in Appendix
F of the Ada Standard. Implementation- specific portions of the package
STANDARD are also included in this appendix.

package STANDARD is

type INTEER is range -32_768 .. 32_767;

type LONG_ IrEGER is range -2_147_483_648 .. 2_147_483_647;

type FICAT is digits 6 range -(2#1.111_(5)111#E+127) ..
(2#1.111_(5)11l1#E+127);

type LONG_FLOAT is digits 15 range
-(2#1.111_(12)1111_1#E+1023

(2#1.11l (12) i1111#E+1023;

type [URATION is delta 2.0**(-14) range -131_072.0 ..
131_072.0;

end STADAD;

B-1

APPENDIX F

APPENDIX F OF THE Ada STANDARD for SofTech's Ada86 toolset

The only allowed implementation dependencies correspond to implementation-.-
dependent pragmas, fo certain machine dependent conventions as mentioned in
chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics are
described in the following sections which discuss topics one through eight
as stated in Appendix F of the Ada Language Reference Manual (ANSI/MIL-STD-
1815A). Two other sections, package STANDARD and file naming conventions,
are also included in this appendix.

vv

(1) Implementation-Dependent Pragmas

++++++++++++ ++++++++++++++++++++++++++++ +++++++++++++++++++++++++++++++++

This section may be copied from the applicant's documentation, but make
sure it covers all the items below.
..+

The pragmas described below are implementation-defined.

Pragma TITLE (arg);

This is a listing control pragma. "Arg" is a CHARACTER
string literal that is to appear on the second line of
each page of every listing produced for a compilation
unit in the compilation. At most, one such pragma may
appear for any compilation, and it must be the first unit
in the compilation (comments and other pragmas excepted).

For many real time applications, fast software reaction to hardware
interrupts is important. A group of pragmas is provided in
recognition of this requirement.

If an Ada task entry has been equated to a hardware interrupt through
.:.._in-, anaddress.clause.(c.f.LRM-.3.5.i),.the occurrence of the hardware -

1nterrupt'in-question-is interpreted by the RSL as an entry call to
the corresponding task entry. The object code generated to implement
interrupt entries includes some overhead, since the Ada programmer
is allowed to make use of the full Ada language within the accept
body for the interrupt entry.

The pragmas described below let the user specify that interrupt
entries, and the tasks that contain them, meet certain restrictions.
The restrictions speed up the software response to hardware
interrupts.

Pragma FAST INTERRUPTENTRY (entrysimple name,
SYSTEM.ENTRY KIND literal)

This pragma specifies that the named task entry has only
accept bodies that execute completely with (maskable)
interrupts disabled, and that none of these accept bodies
performs operations that may potentially lead to task
switches away from the accept body.

Pragma INTERRUPT HANDLER TASK

This pragma specifies that the task at hand is degenerate
in that the whole task body consits of a single loop, which
in turn contains one or several accept statements for fast
interrupt entries, and which accesses only global variables.

Pragma TRIVIALENTRY (entry simple name)

This pragma specifies that all accept statements for the
named entry are degenerate in that their sequence of state-
ments is empty. Moreover, all entry calls to such an entry

...... -are conditional entry calls, and they are issued only from
within accept bodies for fast interrupt entries.

vv
(2) Implementation-Dependent Attributes

The predefined attribute, XIDISP, is not supported.

i!W1

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvV vvvvwVvvvvvVVVvvvvVVvvvvvvvvvVvvvvvvvvvvvvvVV
(3) Package SYSTEM'. '. .* . , ,:',-.

-- B Copyright 1986 Softech, Inc., all rights reserved.

-- Copyright (C) 1987, SofTech, Inc.

package SYSTEM is --(LRM 13.7,and F•

type WORD is range 0..16#FFFF#;
for WORDISIZE use 16; --see[LRM 3.4(10)]

- Ada SIZE attribute gives 16, but machine size is 32.

type BYTE is range 0..255;
for BYTE'SIZE use 8;

-- Ada SIZE attribute gives 8,-but machine size is 16.

subtype REGISTER is SYSTEM.WORD;

--#START iAPX86, iAPXI86, iAPX286R, iAPX386R, PC DOS
subtype SEGMENTREGISTER is SYSTEM.REGISTER;

NULLSEGMENT: constant SYSTEM.SEGMENTREGISTER := 0;
--#STOP iAPX86, iAPXl86, iAPX286R, iAPX386R, PCDOS

--#START iAPX286P, iAPX386P

-- # type SEGMENTLENGTH--INBYTES is range 1..65536;
--B -- Gives the range the length an iAPX286 memory segment can be.

-- The hardware deals with segment limits which is the length

-- of the segment relative to the base minus one.
-- It is more convenient to use the length of the segment

--9 -- so this type is provided.

-- See page 7-13 of the Intel iAPX286 Programmer's Reference Manual.

--B type PRIVILEGE LEVEL is range 0..3;
--9 for PRIVILEGELEVEL'SIZE use 2;
--B -- Privilege level as defined by the iAPX286 hardware.

--B -- The following types form an iAPX286 selector as described on page 7-11
--B -- of the Intel iAPX286 Programmer's Reference Manual.

--B type DESCRIPTORTABLEINDEX is range 0..8191;

--B for DESCRIPTOR TABLE INDEX'SIZE use 13;
--B -- Index into the global or local descriptor table.

-#...type DESCRIPTORTABLEINDICATOR is -

jUE| GL(USEGLOBAL DESCRPTOR TABLE,-USE LOCAL DESCRIPTOR TABLE);

--B for DESCRIPTOR TABLEINDICATOR use
(USE GLOBALDESCRIPTORTABLE => 0, USELOCALDESCRIPTORTABLE => I);

--B for DESCRIPTOR TABLEINDICATOR'SIZE use 1;
--B -- Indicates whether to use the global or the local descriptor table.

--B type SEGMENTREGISTER is
-- r~ecord
--B -- This is a segment selector as defined by the iAPX286 hardware.

/

-- See page 7-11 of the Intel IAPX286 Programmer's Reference Manual.

DESCRIPTOR_INDEX: DESCRIPTOR-TABLE INDEX;

-- This is an index into either the global or the local

-- descriptor table. The index will select one of the 8 byte

-- descriptors in the table.

-- The table to use is given by the TABLE-INDICATOR field.

--9 -- NOTE:
-- Even if an index is in the proper range, it might not refer

t-- t an existing or valid descriptor. See page 7-5 of the

-- Intel iAPX286 Programmer's Reference Manual.

--9 TABLEINDICATOR: DESCRIPTOR TABLE-INDICATOR;
--9 -- Whether the index is an index into the global or the local

--| -- descriptor table;

--9 REQUESTED PRIVILEGE LEVEL: PRIVILEGELEVEL;
--9 -- The requested privilege level reflects the privilege level of

--9 -- original supplier of the selector. Needed when addresses are

--9 -- passed through intermediate levels. See page 7-14 of the

--9 -- Intel iAPX286 Programmer's Reference Manual.

--9 end record;

--9 for SEGMENT.REGISTER'SIZE use 16;

--9 for SEGMENTREGISTER use

-- 9 record
-... REQUESTEDPRIVILEGE-.LEVEL at 0 range 0..1;

--9 TABLE INDICATOR at 0 range 2..2;

--9 DESCRIPTOR INDEX at 0 range 3..15;

--9 end record;

--9 NULL SEGMENT : constant SYSTEM.SEGMENTREGISTER :

--9 (0, USEGLOBALDESCRIPTORTABLE, 0);

--9 -- Index of the IDT descriptor in GDT

--9 IDTJNDEX constant DESCRIPTOR.TABLEINDEX : 2;

--9 -- Size in bytes of the descriptors in IDT

--9 IDTENTRYSIZE : constant := 8;

--#STOP iAPX286P, iAPX386P

subtype OFFSET-REGISTER is SYSTEM.REGISTER;

type ADDRESS is
record
SEGMENT: SYSTEM.SEGMENTREGISTER;

4 OOFFSET.-:-SYSTEM.OFFSET..REGISTER-

MMlaem endre rd r--- O F 6
:

for ADDRESS'SIZE use 32;

for ADDRESS use --see(UM83 4-10, ASM86 6-57,

record Ada Issue 71

OFFSET at 0 range 0..15;

SEGMENT at 2 range 0..15;

end record;

--#START iAPX86, iAPX186, iAPX286R, iAPX386R, PC-DOS

NULL ADDRESS : constant SYSTEM.ADDRESS :=:.(0, 0.); ..

--#STOP iAPX86, iAPXl86, iAPX286R, iAPX386R, PCDOS

-#START iAPX286P, iAPX386P . , ,

-- # NULL ADDRESS :, constant SYSTEM.ADDRESS := (SYSTEM.NULLSEGMENT, 0);
--1STOP iAPX286P, iAPX386P- •

• _ - ; - . • . , . ,, ;". . ,'

subtype IOADDRESS . is SYSTEM.REGISTER;

--#START iAPX86, iAPX186, IAPX286R, iAPX386R,:PC DOS
type ABSOLUTEADDRESS is range 0..16#FFFFF#;
for ABSOLUTE.ADDRESS'SIZE.use 20;

-- Ada SIZE attribute gives 20, but.machine size:is 32..
--#STOP iAPX86, iAPX186, iAPX286R, iAPX386R, PC DOS

--#START iAPX286P, iAPX386P
--I type ABSOLUTEADDRESS is range 0..16#FFFFFF#;•.
--I for ABSOLUTEADDRESS'SIZE use 24;

-- Ada SIZE attribute gives 24, but machine, size is 32.
--#STOP iAPX286P, iAPX386P

type NAME is (VAX780_VMS, iAPX86, iAPX186, iAPX286R, iAPX286P,
* PC_DOS, iAPX386R, iAPX386P);

--#START IAPX8.
SYSTEM NAME constant SYSTEM.NAME C SYSTEM.iAPX86);
--Intel 8086 in real address mode.

--#STOP iAPX86..

--#START iAPX186
-- * SYSTEMNAME- constant SYSTEM.NAME : SYSTEM.iAPXl86);
-- $ -- Intel 80186 in real address mode.
--#STOP iAPX186

--#START iAPX286R
-- # SYSTEMNAME : constant SYSTEM.NAME (SYSTEM.iAPX286R);
--# --Intel 80286 in real address mode.
--#STOP iAPX286R, iAPX386R

--#START iAPX286P
-- # SYSTEMNAME : constant SYSTEM.NAME (SYSTEM.iAPX286P);
--# --Intel 80286 in protected virtual address mode.
--#STOP iAPX286P

--#START iAPX386R
-- # SYSTEMNAME constant SYSTEM.NAME C SYSTEM.iAPX386R);
-- # --Intel 80386 in real address mode.

. STOP-iAPX386R

-- --- START iAPX386P
-- # SYSTEMNAME constant SYSTEM.NAME : SYSTEM.iAPX386P);
--# --Intel 80386 in protected virtual address mode (iAPX286P subset).
--#STOP iAPX386P

--# START PC DOS
--4 SYSTEM-NAME : constant SYSTEM.NAME (SYSTEM.PC_DOS);
--# --Intel 8086 in real address mode.

-- #STOP PC-DOS

STORAGE UNIT: constant :2 8;

--#START iAPX86, iAPXl86, iAPX286R, iAPX386R, PC-DOS
IEMORYSIZE : constant := (2**20)-1 ; -- 1_048_575

--#STOP iAPX86, iAPX186, iAPX286R, iAPX386R, PC-DOS

-#START iAPX286P, iAPX386P
--# MEMORYSIZE : constant := (2**24)-1 ; -- 16_777_215

--#STOP iAPX286P' iAPX386P

MININT : constant := -(2**31) ; -- -2 147_483_648
MAX INT : constant :z (2**31)-1 ; -- 2147_483_647

MAXDIGITS : constant :z 15; --Changed from 9 to 15 to match
--change to LONGFLOAT in package
--STANDARD

--Note that the Intel 8087 Numeric Data Processor HAS dictated the
--value of MAXDIGITS.

MAX MANTISSA: constant : 31;
FINEDELTA : constant : 4.656_612_873_077_392_578_125E-10; -- 2.0"*(-31);

type INTERRUPTTYPENUMBER is range 0..255; . -

--Interrupts having the following Interrupt Type Numbers are specific to the
--iAPX86, iAPX186, and iAPX286 CPUs:
--(Note that the following are declared as CONSTANT universal integers rather
--than CONSTANT SYSTEM.INTERRUPTTYPE NUMBERs. This is so that they can be
--used in MACHINECODE statements, which require all expressions to be static.
--At least in our implementation, conversions such as
--"MACHINECODE.BYTEVAL(SYSTEM.DISPATCHCODEINTERRUPT)" are not considered
--to be static.

DIVIDEERROR INTERRUPT : constant := 0;
--Ada semantics dictate that this interrupt must be interpreted as the
--exception NUMERICERROR.

SINGLE STEP INTERRUPT : constant := 1;
--The non-maskable internal interrupt generated by the CPU after the
--execution of an instruction when the Trap Flag (TF) is set.

NON MASKABLE INTERRUPT : constant := 2;
--The hardware-generated external interrupt delivered to the CPU via the
--NMIpin...This-interrupt can never be disabled by software and can

f~e ,. .pnot ate crit ical.?reg ion s ! m w q' ' ' ' -..,.

OVERFLOW INTERRUPT : constant 4;
--Ada semantics dictate that this interrupt must be interpreted as the
--exception NUMERICERROR.

--Interrupts having the following Interrupt Type Numbers are specific to the
--actual configuration of the iSBC 86/30 board rather than just its CPU:

--#START iAPX86, iAPX286R, iAPX386R, iAPX286P, iAPX386P

RSL CLOCK-INTERRUPT : constant := 64;
--#STOP. IAPX86,-iAPX286Ri: iAPX386R, iAPX286P, iAPX386P
--#START PCDOS

-- # RSL CLOCK INTERRUPT, • . constant : 8;
tSTOP PC DOS , . .

-#START iAPX86, iAPX286R," iAPX386R, iAPX286P, iAPX386P, PCIDOS
--This interrupt is reserved for the use of the RSL in maintaining the
--real-time clock and for the support of DELAY statements.

--#STOP iAPX86,-iAPX286R,: iAPX386R, iAPX286P, iAPX386P, PCDOS
--#START iAPX86, iAPX286R, iAPX386R, iAPX286P, iAPX386P
--Upper 5 bits, supplied by PIC, are 2#01000#,

--#STOP iAPX86,-iAPX286R, iAPX386R, iAPX286P, iAPX386P
--#START PCDOS

-- # --Upper 5 bits, supplied by PIC, are 2#000010,
-- #STOP. PCDOS ;. ... '
--#START iAPX86, iAPX286R, iAPX386R, iAPX286P, iAPX386P, PC DOS
--lower 3 bits, derived from PIC input number (IRO), are 2#000#.

--By default, this interrupt is the highest in priority.

--Assumption: The OUTO output of the PIT (alias "TIMER 0 INTR") is
--connected to the PIC input IRO.

--#STOP iAPX86, iAPX286R, iAPX386R, iAPX286P, iAPX386P, PCDOS

--#START iAPX186
-- # RSLCLOCKINTERRUPT . : constant := 18;
-- # --This interrupt is reserved for the use of the RSL in maintaining the
--# --real-time clock.

--# DELAYEXPIRYINTERRUPT : constant := 8;
--# --This interrupt is reserved for the use of the RSL in implementing delays
--i --of less than a full RSL clock cycle.
--#STOP iAPX186

--#START iAPX86
NUMERICPROCESSORINTERRUPT : constant :- 71;

--This interrupt must be interpreted as the exception NUMERICERROR.

--Upper 5 bits, supplied by PIC, are 2#01000#,
--lower 3 bits, derived from PIC input number (IR7), are 2#111#.

--By default, this interrupt is the lowest in priority.

--Assumption: The 8087 interrupt line (alias Math Interrupt or "MINT"), is
--connected to the PIC input IR7.

--#STOP iAPX86

--, I=START PC DOS. - _ _ --.... "

C PROCESSORINTERRUPT . ..- :-constant := NONMASKABLE INTERRUP - °

-- This interrupt must be interpreted as the exception NUMERIC ERROR
-- When bits 6 and 7 of port 16#O0C2# are zero. Otherwise it indicates
-an I/O Channel Check or a Read/Write Memory Parity Check.

-- The IBM-PC delivers the numeric processor exceptions via the
-- non-maskable interrupt.

--# STOP PC DOS

-- #START iAPXI86

-- | NUMERIC PROCESSOR INTERRUPT : constant := 15;

-, --This interrupt must be interpreted as the exception NUMERIC ERROR.

--* -Upper 5 bits, supplied by PIC, are 2#00001#,
-, --lower 3 bits, derived from PIC input number (IRT), are 2#111#.

--# --By default, this interrupt is the lowest in priority.

-, --Assumption: The 8087 interrupt line (alias Math Interrupt or "MINT"), is

--1 --connected to The PIC input IR7.
--#STOP iAPXI86

--#START iAPX286R, iAPX386R, iAPX286P, iAPX386P
-- # NUMERIC PROCESSORINTERRUPT : constant := 16;

--# --alias Processor Extension Error [PRM Numeric Supplement 1-37]
--#STOP iAPX286R, iAPX386R, iAPX286P, iAPX386P

--*** The following RSL internal interrupt type numbers must be changed
-- when the compiler interface has been changed.

--#START iAPX86, iAPX186, iAPX286R, iAPX386R, iAPX286P, iAPX386P

--The software interrupt having the following Interrupt Type Number is use
d

--internally and exclusively by the RSL to check if the current stack
--has enough space:

CHECKSTACK INTERRUPT .. . constant : 48;

--The software interrupt having the following Interrupt Type Number is use
d

--internally and exclusively by the RSL to effect switching between tasks:

DISPATCHCODEINTERRUPT . constant := 32;

--Interrupts having the following Interrupt Type Numbers (all
--software-generated) are used internally and exclusively by the generated
--code for effecting subprogram entry sequences where there is no SFDD:

ENTERSUBPROGRAMWITHOUTLPPINTERRUPT : constant := 49;
--The generated code uses this interrupt to effect a subprogram entry
--sequence without a Lexical Parent Pointer.

ENTERSUBPROGRAM INTERRUPT : constant :- 50;
--The generated code uses this interrupt to effect a subprogram entry
--sequence with a Lexical Parent Pointer.

m.Interrupts..having-!the-following Interrupt Type Numbers (all software-

--generated) are used internally and exclusively by the generated code to
--cause certain Ada exceptions to be forced:

PROGRAM_ERRORINTERRUPT : constant := 53;
--This interrupt must be interpreted as the exception PROGRAMERROR.

CONSTRAINT ERRORINTERRUPT : constant := 54;

--This Interrupt must be interpreted as the exception CONSTRAINT-ERROR.

NUMERIC ERRORINTERRUPT : constant := 55;

mmm n munnmN m rm|

-This interrupt must be interpreted as the exception NUMERIC-ERROR.

-Interrupts having the following Interrupt Type Numbers (all software-

--generated) are used internally and exclusively~by the generated code to

-cause certain RSL services to be invoked:

ALLOCATEOBJECTINTERRUPT constant : 56;
--This interrupt causes an object to be allocated in: the heap of the

--anonymous task.

--The software interrupts having the following Interrupt Type Numbers are
used

--internally and exclusively by the RSL to effect entry to and exit from

.--Innocuous Critical Regions:

ENTER INNOCUOUSCRITICALREGIONINTERRUPT: constant.:= 33; ..

LEAVE INNOCUOUSCRITICALREGIONINTERRUPT: constant := 34;

--The software interrupts having the following Interrupt Type Numbers are
--defined (and used) by the RSL and can be used by the user:

-- Used to halt. the execution of the program from any point.
HALT INTERRUPT : constant := 36;
ENDOF PROGRA4_INTERRUPT : constant :.z-..37

STORAGEERROR INTERRUPT : constant := 38;

--This interrupt must be interpreted as the exception STORAGEERROR.

--#STOP iAPX86, iAPX186, iAPX286R, iAPX386R, iAPX286P, iAPX386P

-- #START iAPX286P, iAPX386P

-- LOADTASKREGISTER INTERRUPT : constant : 37;

-- CLEARTSFLAG INTERRUPT : constant : 38;
-- HALTINTERRUPT : constant : 39;

-- #STOP iAPX286P, iAPX386P

--Interrupts having the following Interrupt Type Numbers are specific to the
--Intel iAPX 186 and iAPX 286 CPUs:

BOUNDEXCEPTION INTERRUPT : constant := 5;
--This interrupt will be interpreted as the exception CONSTRAINTERROR.

UNDEFINEDOPCODEEXCEPTION INTERRUPT : constant := 6;

--This interrupt will be interpreted as the exception PROGRAMERROR.

PROESSOR- EXT..SIONO AVILABLENTERRUPT:.constant:--7;-
-This interrupt will be interpreted as the exception PROGRAM ERROR.

-- #START PC DOS

-# -The software interrupt having the following Interrupt Type Number is use
d
-# -internally and exclusively by the RSL to check if the current stack
-# --has enough space:

-# CHECKSTACKINTERRUPT constant := 96;

--# --The software interrupt having the following Interrupt Type Number is use
d
--# --internally and exclusively by the RSL to effect switching between tasks:

--# DISPATCHCODEINTERRUPT . constant := 99;

-- # --Interrupts having the following Interrupt Type Numbers (all
--# --software-generated) are used internally and exclusively by the generated
--# --code for effecting subprogram entry sequences where there is no SFDD:

-- $ ENTERSUBPROGRAMWITHOUTLPPINTERRUPT : constant := 97;
-- I --The generated code uses this interrupt to effect'a subprogram entry
-- * --sequence without a Lexical Parent Pointer.

-- # ENTERSUBPROGRAMINTERRUPT. : constant := 98;

--# --The generated code uses this interrupt to effect a subprogram entry
-- $ --sequence with a Lexical Parent Pointer.

--f --Interrupts having the following Interrupt Type Numbers (all software-
-- % --generated) are used internally and exclusively by the generated code to
--I --cause certain Ada exceptions to be forced:

--# PROGRAMERRORINTERRUPT : constant := 102;

--J --This interrupt must be interpreted as the exception PROGRAM ERROR.

--I CONSTRAINTERRORINTERRUPT : constant := 103;
--# --This interrupt must be interpreted as the exception CONSTRAINTERROR.

-- $ NUMERICERRORINTERRUPT , : constant := 104;
-- * --This interrupt must be interpreted as the exception NUMERIC ERROR.

\- --Interrupts having the following Interrupt Type Numbers (all software-
--generated) are used internally and exclusively by the generated code to ,''.

4 --cause certain RSL services to be invoked:- . .

f ALLOCATE OBJECT INTERRUPT ,,- constant := 105;
.W-This-Tnferrupt4causes an object to be allocated in the heap of the

g--- -''Aon s motask.*

--The software interrupts having the following Interrupt Type Numbers are

--internally and exclusively by the RSL to effect entry to and exit from
--Innocuous Critical Regions:

ENTERINNOCUOUSCRITICAL_REGION_INTERRUPT: constant := 106;

-I LEAVE INNOCUOUS CRITICALREGIONINTERRUPT: constant :s 107;

-- H HALTINTERRUPT : constant :z 109;
-* END_OFPROGRAMINTERRUPT : constant 110;

--#STOP PC-DOS

--Intel "reserves- interrupts with Interrupt Type Numbers in the range 0..31,
--with 32..255 available to the user. We allow the user to equate interrupts
--in the range 72..103 to entries of-task via Ada address clauses. We also
--allow'such use of interrupts 1, 2, and 3, as well as interrupts arriving at

--#START iAPX86, iAPX286R, iAPX386R, iAPX286P, iAPX386P
--PIC inputs IRI, IR2, IR3, IR4, IR5, and IR6 (Interrupt Type Numbers 65..

70).
--#STOP iAPX86, iAPX286R, iAPX386R, iAPX286P, iAPX386P

--#START iAPXl86
--# --iAPX186 inputs INTO, INT1, and INT2 (Interrupt Type Numbers 12..14).
--#STOP iAPXI86

--#START PCDOS
--# -- IBM-PC DOS reserves interrupts with Interrupt Type Numbers in the
-- range 0..95. We allow the use of 1, 3, 6, 7, as well as

-- #. .- d interrupts arriving at PIC inputs IR2, IR3, IR4, IR5 (Interrupt
--# -.Type Numbers 10, 11, 12, and 13).
--#STOP PCDOS .

pragma PAGE;

--The enumeration literals of type ENTRY KIND distinguish between entries of
--software tasks and interrupt entries, and identify different varieties of
--the latter when used as the second argument in a FASTINTERRUPTENTRY
--pragma:

type ENTRYKIND is
(

--ORDINARY INTERRUPT ENTRY--

ORDINARYINTERRUPTENTRY,
--This is not a Fast Interrupt Entry. It is invoked by an interrupt
--other than NMI. This entry may be called by a software task as
--well as by interrupt.

-If an interrupt-is equated to an entry by means of an address
--clause, and the FASTINTERRUPT ENTRY pragma is not given for that
--entry, the entry will be treated as an ORDINARYINTERRUPTENTRY by
--default.

--When this kind of interrupt entry occurs, the state of the 8087
--Numeric Data Processor will always be saved as part of the context
--of the interrupted task, because the normal task-switching
--mechanism will attempt to restore it before resuming the
--interrupted task.

--This is a Non-Maskable Interrupt Entry invoked only by NMI whose
-accept body makes no entry calls.

NONDPNON MASKABLE
--This is a Non-Maskable Interrupt Entry invoked only by NMI whose
-accept body makes no entry calls.

--It differs from NON MASKABLE only in that the state of the 8087
--Numeric Data Processor is neither saved nor restored during
--interrupt delivery.

pragma PAGE;

--
-- NOTE: Be sure to compute TICK and TICKSPERDAY by hand, as the roundoff --

-- errors introduced in computer arithmetic are unacceptably inaccurate. --

--

--ISTART iAPX86
--If one loaded the Programmable Interval Timer (PIT) clock counter with t

he
--shortest possible delay, namely 1, TICK is the amount of time, in second

S,
--which would pass between the loading and the interrupt which the PIT wou

l d

--issue upon counting down and reaching zero.

TICK constant := 6.510416_666_666_666_666 667E-6;
--roughly 6.5 microseconds

-#STOP iAPX86

--#START iAPX186
--# --For the system clock counter of the iAPXl86's Internal Timer Unit, TICK
is
--I --the amount of time, in seconds, that it takes to count from 0 to 1.

-- * --IMPORTANT: The iSBC 186/03A runs at 8 MHz, and its Internal Timer Unit's
-- # --base clock rate is 8 MHz divided by four, or 2 MHz.

--t --Therefore one counter tick = I sec. / 2_000_000 = 0.000_000_5 sec.
-- # --One major clock cycle = 2**16 * one counter tick

-- = 65_536 * 0.000_0005 sec.

--- = 0.032_768 sec.
-- * --We would like a greater time interval between counter interrupts used fo
r

--0 --timekeeping. In fact, we would like about one second, or as close as
|,. pogssible.__This._means that we must prescale our system clock counter.

-1 -lmp
-.

i.

- --To find prescale factor, solve for X:
-- X * one major clock cycle = I second
-- X * 0.032_768 sec. = 1 sec.

-- -- =1/ 0.032_768
-- X = 30.517578_125

- =30

--t --So SYSTEM.TICK = a prescaled counter tick
= 30 * 0.000_000_5 sec.

--- = 0.000_015 sec.

-I -and a prescaled major clock cycle- 2"*16 * one prescaled counter tick
- .=65 536 * 0.000015 sec.

-- "= 0.983 sec.

--B --There are 66_666 +'2/3 ticks in a second.*
--B --The number of ticks per second must be used to calculate the values of t
he
-- B --ADA .RSL constants CLOCKTICKSPER.DAY, TICKSPERHALFDAY, and INT.CHUNK_

-B -- RAW TIME.

--B TICK constant 0.000015; --15 microseconds
--#STOP iAPX186

--#START iAPX286P, iAPX386P, iAPX286R, iAPX386R
--# --If one loaded the Programmable Interval Timer (PIT) clock counter with t
he
--B --shortest possible delay, namely 1, TICK is the amount of time, in second
S, ". .1 ,I

--# --which would pass between the loading and the interrupt which the PIT wou
ld
--B --issue upon counting down and reaching zero.

--B --The CLKO input to the 8254 PIT on the iSBC 286/10 is 1.23 MHz.
--B --So one counter 0 tick = 1 sec./ 1230 000 = 0.000000813_00813_... sec.
--B --One major clock cycle = 2**16. * one counter tick
-- =. -- -65_536 * 0.0000_00813_00813... sec.
-- -.. "= 0.0535 sec... ..
Q--B --

--B --There are 1_230_000 (in hex, 16#0012 C4B0#) ticks in a second if
---I --is not prescaled.

--B --The maximum recommended value of the smallest delay duration (LRM 9.6) i
s
--# --50 microseconds. This will give the lowest possible frequency of timer

--B --interrupts. To achieve this, another counter is needed as a prescaler.
The
--B --prescale factor (X) is calculated as follows.
--II -- X = 0.0000_5 / One counter 0 tick
-- X -- K = 0.0000_5 / 0.0000_00813_00813
-- -- X = 61.5

X-- = 61 (nearest rounded off value)
-- % --Therefore SYSTEM.TICK = 61 * counter 0 tick

-- = 61 * 0.000000813_00813 ... sec.

-- = -- - 0.0000 49593 49593_49593_... sec.

-- = -- = 49.593_49593 4959349593_... microseconds

--B --One major clock cycle = 2**16 * SYSTEM.TICK
-- = -- = 651536 * 0.0000_49593_49593_49593_... second
--p -- = 3.2501_593495934959349_... seconds

.-ITICK , ..-constant ='O.000_49593_49593_49593; --about 49.59 ml
croseconds

--4 TICKSPER SECOND : constant := 20163.93442_62209_52836_06557; --approxima
te

--# --TICKS PER SECOND must be used to calculate (by handl) the values of the
--B --ADARSL constants CLOCKTICKSPERDAY, TICKS PER HALF DAY, and INT CHUNK_
-- B --RAWTIME.

--#STOP iAPX286P, iAPX386P, iAPX286R, iAPX3,6R

-# START PC-DOS

--# --If one loaded the Programmable Interval Timer (PIT) clock counter with t
he
--# -shortest possible delay, namely 1, TICK is the amount of time, in second
3.
--# --which would pass between the loading and the interrupt which the PIT wou
Id
-- # -issue upon counting down and reaching zero. The clock input to the

--I --PIT is 1.19318 MHZ, so a tick is 1/1.19318 MHZ or approximately
S--0.8380965E-6 seconds

--I TICK : constant := 0.838096515E-6;
--I --roughly .83 microseconds
--#STOP PC-DOS

type TIME is private;
NULLTIME : constant TIME;

type DIRECTIONTYPE is(AUTO INCREMENT, AUTO-DECREMENT);
type PARITYTYPE is(ODD, EVEN);

type FLAGSREGISTER-is: -

record

--#START iAPX286P, iAPX386P

--# NESTEDTASK : BOOLEAN : FALSE;
.--# 10_PRIVILEGELEVEL : NATURAL range 0..3 := 1;

--#STOP iAPX286P, iAPX386P

OVERFLOW : BOOLEAN FALSE;
DIRECTION : SYSTEM.DIRECTIONTYPE SYSTEM.AUTOINCREMENT;
INTERRUPT : BOOLEAN = TRUE;
TRAP : BOOLEAN FALSE;
SIGN : BOOLEAN FALSE;
ZERO : BOOLEAN TRUE; --nihilistic view
AUXILIARY : BOOLEAN FALSE;
PARITY : SYSTEM.PARITYTYPE SYSTEM.EVEN;
CARRY BOOLEAN FALSE;

end record;

for FLAGS-REGISTER use
record

--#START iAPX286P, iAPX386P
--# NESTED TASK at 0 range 14..14;
-- 10 PRIVILEGE LEVEL at 0 range 12..13;_

--8TOP~..APX286P,.iAPX3P -- ..

OVERFLOW at 0 range ll..11;
DIRECTION at 0 range 10..10;
INTERRUPT at 0 range 9.. 9;
TRAP at 0 range 8.. 8:
SIGN at 0 range 7.. 7;
ZERO at 0 range 6.. 6;
AUXILIARY at 0 range 4.. 4;
PARITY at 0 range 2.. 2;
CARRY at 0 range 0.. 0:

end record;

NORMALIZEDFLAGS REGISTER : constant SYSTEM.FLAGSREGISTER :
C

-#START iAPX286P, iAPX386P
-# NESTEDTASK -> FALSE,
-# I0.PRIVILEGE LEVEL => 1,

--#STOP iAPX286P, iAPX386P

OVERFLOW = - FALSE,
DIRECTION => SYSTEM.AUTO INCREMENT,
INTERRUPT -> TRUE,
TRAP => FALSE,
SIGN "=> FALSE;
ZERO .> TRUE, --nihilistic view
AUXILIARY => FALSE,
PARITY => SYSTEM.EVEN,
CARRY => FALSE

subtype PRIORITY is INTEGER range l..15;

UNRESOLVEDREFERENCE: exception; --see Appendix 30 of A-spec
SYSTEM-ERROR . : exception;

function EFFECTIVE-ADDRESS
A: in SYSTEM.ADDRESS

return SYSTEM.ABSOLUTEADDRESS;

--PURPOSE:
-- This function, written in ASM86, returns the 20-bit effective address
-- specified by the segment/offset register pair A.

pragma INTERFACE(ASM86, EFFECTIVE-ADDRESS);

function FASTEFFECTIVEADDRESS
-- (A: in SYSTEM.ADDRESS

--found in DX (segment part) and AX (offset part), NOT on stack

return SYSTEM.ABSOLUTE ADDRESS;
--in DX:AX;

--PURPOSE:
-- This function, written in ASM86, returns the 20-bit effective address
-- specified by.the segment/offset register pair DX:AX

.Th'i function',is "intended for use by ASM routines. -It does not observe
...... Ada calling conventions and therefore does not make a null SFDD. It

-- does save and later restore all those registers that it uses
-- internally.

pragma INTERFACE(ASM86, FASTEFFECTIVE ADDRESS);

function TWOS COMPLEMENTOF
(W: in SYSTEM.WORD

)
return SYSTEM. WORD;

-PURPOSE:
- This function, written in ASM86, returns the two's complement of the
- given argument.

--ASSUMPTIONS:
-- 1) CRITICAL REGION INFORMATION:
-- This procedure makes no assumptions about critical regions.

-- It neither enters nor leaves a critical region.
pragma INTERFACE(ASM86, TWOS COMPLEMENTOF);

procedure ADD TOADDRESS
ADDR : in out SYSTEM.ADDRESS;
OFFSET: in SYSTEM.OFFSETREGISTER);

--PURPOSE:
-- This procedure, written in ASM86, adds OFFSET to the offset part of

-- ADDR. If overflow occurs, NUMERICERROR is raised.
--SIDE EFFECTS:
-- Raising of NUMERIC-ERROR.

pragma INTERFACE(ASM86, ADDTO-ADDRESS);

procedure SUBTRACTFROMADDRESS
ADDR : in out SYSTEM.ADDRESS;
OFFSET: in SYSTEM.OFFSETREGISTER)

-- PURPOSE:
-- This procedure, written in ASM86, subtracts OFFSET from the offset part
-- of ADDR. If underflow occurs, NUMERIC ERROR is raised.
--SIDE EFFECTS:
-- Raising of NUMERIC ERROR.

pragma INTERFACE(ASM86, SUBTRACTFROMADDRESS);

function INTERRUPTTYPENUMBEROF
A : in SYSTEM.ADDRESS

)
return SYSTEM.INTERRUPTTYPENUMBER;

--PURPOSE:
-- This function, written in ASM86, returns the Interrupt Type Number that

-- uniquely identifies the interrupt whose interrupt vector is located at
-- the specified address. If this address is not the address of an

-- interrupt vector, CONSTRAINTERROR is raised.
--SIDE EFFECTS:
-- Raising of CONSTRAINTERROR.

pragma INTERFACE(ASM86, INTERRUPTTYPENUMBEROF);

procedure GET .ADDRESS FROM_I NTERRUPTTYPENUMBER
A : out SYSTEM.ADDRESS;
ITN : in SYSTEM.INTERRUPTTYPENUMBER

--PURPOSE:
-- This procedure, written in ASM86, returns the address of the interrupt
-- vector numbered ITN.

pragma INTERFACE(ASM86, GETADDRESSFROMINTERRUPTTYPENUMBER

function GREATER TEAM
(Al : in SYSTEM.ADDRESS;
A2 : in SYSTEM.ADDRESS

return BOOLEAN;

-- PURPOSE: -

-- This function, written in ASM86, returns the value of the expression
-Al > A2; -

praga INTERFACE(ASM86, GREATER-THAN)

function MINUS - .

Al : in SYSTEZ4.ADDRESS;
A2 : in SYSTEM.ADDRESS

return LONG INTEGER;

--PURPOSE:
-- This function, written in ASM86, returns the signed value of Al A 2.

pragma INTERFACE(ASM86, MINUS 1;

function ~
(Al :in SYSTEM.ADDRESS; -

A2 : in SYSTEM.ADDRESS

return. BOOLEAN. renames. &YSTEZ.GREATERTHAN;-

function""
Al. : in SYSTEM.ADDRESS;
A2 :in SYSTEI4.ADDRESS

return LONG-INTEGER renames SYSTEM.MINUS;

-- procedure ADJUST_-FOR_-UPWARD_-GROWTH
-- (OLDADDRESS : in SYSTEM.ADDRESS;
-- ADJUSTEDADDRESS: out SYSTEM.ADDRESS)

-- Transforms the given SYSTEM.ADDRESS into a representation yielding
-- the same effective addriss, but in which the SEGMENT component is
-- as large as possible.

-- procedure ADJUSTFORDOWNWARD_-GROWTH
-- (OLDADDRESS :in SYSTEM.ADDRESS;

-Z_. ,.ADJUSTED-ADDRESS:_outSYSTEM. ADDRESS)
zwff-=Twansforms :th*-given SYSTEM.ADDRESS into a representation yielding

-- the same effective address, but in which the OFFSET component is as
-- large as possible.

--private

-pragma INTERFACE(ASM86, ADJUSTFORUPWARDGROWTH)
-pragma INTERFACE(ASM86, ADJUSTFORDOWNWARDGROWTH)

private

type LONG CYCLE is array(1..3)ot SYSTEM.WORD;
pragma PACK(LONGCYCLE); -Make this type occupy 64 bits.

type TIME is --This may be viewed as a single 64-bit integer
record -representing a quantity of SYSTEM.TICKs.

CYCLES : LONG CYCLE;
TICKS : SYSTEM.WORD;

end record;

for TIME use record
CYCLES at 0 range 0..47;
TICKS at 6 range 0..15;

end record;

--A TIME variable may be viewed as a 64-bit integer, or as a record with a
--more significant CYCLES part and a less significant TICKS part. Whenever
--the TICKS part is incremented, the addition may carry over into the
--adjacent CYCLEs part.

--Storage layout of a variable of type TIME:

- increasing addresses

--- - ---- --- - --- - --

-- 1-------------------------------+---------------------+---------------------

-- 1 CYCLES(l) I CYCLES(2) I CYCLES(3) I TICKS I
4 .--

-- V
one word

NULLTIME constant TIME : ((OTHERS => 0), 0);

end SYSTEM;

- - - - - - - - - -

v V vvvwvvv

(4) Representation Clause Restrictions"' . .".

........................

Representation clauses specify how the types of the language

are to be mapped onto the underlying machine. The following

are restrictions on representation clauses.
...

'Address Clausesi

Address clauses are supported for the following items:

1. Scalar or composite objects with the following restrictions:

(a) The object must not'be nested within a subprogram or
task directly or indirectly.

(b) The size of the object must be determinable at time of
compilation.

2. Subprograms with the following restrictions:

(a) The subprogram can not be a library subprogram

(LRM requirement).

(b) Any subprogram declared within a subprogram having an
address clause will be placed in relocatable sections.

3. Entries - An address clause may specify a hardware interrupt
with which the entry is to be associated.

Length Clause

T'STORAGESIZE for task type T specifies the number of bytes

to be allocated for the run-time stack of each task object of

type T.

Enumeration Representation Clause

In the absence of a representation specification for an

enumeration type T, the internal representation of T'FIRST is

0. The default SIZE for a stand-alone object of enumeration
type T will be the smallest of the values 8, 16, or 32, such

that the internal representation of TFIRST and TILAST both
allwithinthe range:...

. . .. ,- T"M M : .- + "O M- w. . - -1. .-.-- "

-2**(T'SIZE - 1) .. 2**(T'SIZE - 1)-I.

Length specifications of the form:

for TISIZE use N;

and/or enumeration representations of the form:

for T use aggregate

Are permitted for N in 2..32, provided the representations

and the SIZE conform to the relationship specified above,
or else for N in 1..31, provided that the internal

representation of TFIRST > = 0 and the representation of

T'LAST = 2,"(TSIZE) - 1.

For components of enumeration types within packed composite

objects, the smaller of the default stand-alone SIZE and the
SIZE.from a length specification is used.

In accordance with the rules of Ada, and the implementation of
package STANDARD, enumeration representation on types derived
from the predefined type BOOLEAN are not accepted, but length
specifications are accepted.

Record Representation Clause

A length specification of the form

for T'SIZE use N;

Will cause arrays and records to be packed, if required, to
accommodate the length specification.

The PACK pragma may be used to minimize wasted space between
components of arrays and records. The pragma causes the type
representation to be chosen such that storage space requirements
are minimized at the--possible-expense of dat&-access time and
and code space.

A record type representation specification may be used to
describe the allocation of components in a record. Bits are
numbered 0..7 from the right. (Bit 8 starts at the right of
the next higher-numbered byte.)

The alignment clause of the form:

at mod N

can specify alignment of I (byte) or 2 (word).

Pol =o11DElemu i inI l

VVVVVVVVVVVVVVVVVVVVVWVVVVVWWVVVvvvvvvvvvvWVVvVVVVVV

(5) Conventions .. .

The following conventions are used for an implementation-
generated name denoting implementation-dependent components.
...

NONE

VVVVVvvvvvvVVVVVv VVVVVVVVVVVVVVVVVVVVVVVVW VVVVVVVVVVVVVVVWVVVVVVVVvVVVVVVVVVV

(6) Address Clauses

The following are conventions that define the interpretation
of expressions that appear in address clauses, including
those for interrupts.
...

NONE

wvvvvvvwvvvvvvvvwvvvvvvvwwvvvvvvvvwvvvvvvvvvvvvvvvvvvvvvvvwvvvvvwvvvvvvvvvvvv

(7) Unchecked Conversions.........«.-

The following are restrictions on unchecked conversion,
including those depending on the respective sizes of objects
of the source and target.
...

A program is erroneous if it performs UNCHECKED-CONVERSION when
the size of the source and target types have different.

vv
(8) Input-Output Packages

The following are implementation-dependent characteristics
of the input-output packages.
..+....

SEQUENTIAL 10Package

NOT SUPPORTED

...
Declare file type and applicable operations for files of
this type.
...

DIRECT_10 Package

NOT SUPPORTED

TEXT 10 Package

-- ' PACKAGE SPECIFICATION FOR TEXT_10

The Specification of the Package TEXT 1O contains the following
(implementation specific) definitions in addition to those specified
in 14.3.10 of the LRM:

-- * Copyright 1986 Softech, Inc., all rights reserved.

-- Copyright (C) 1987, SofTech, Inc.

with ADA RSL, 10EXCEPTIONS;

--ISTART iAPX86, iAPXl86, iAPX286R, iAPX386R, iAPX286P, iAPX386P
with SYSTEM, 10 DEFS;

--#STOP iAPX86, iAPXl86, iAPX286R, iAPX386R, iAPX286P, iAPX386P

-- $START PC-DOS
-- # with SYSTEM, IODEFS, BASICIO;
--#STOP PCDOS

-- * PACKAGE SPECIFICATION FOR TEXT IO

PURPOSE:.
-- % This package provides input and output services for textual files

-- % including creation,deletion,opening, and closing of said files.
--- % This package is as specified in the Ada Reference Manual (1982).

-- % And here a word about primary and secondary routines. A primary routine
is
--- % always visible outside the package. If it references a file, it will
-- % attempt to gain exclusive access to that file descriptor. (The term
-- % "exclusive access" is use-i with regard to tasks.) All modifications or
--% tests on file descriptor FIELDs must be made only if the current task
-- % has exclusive access to that descriptor. In every case where a primary
-- % routine gains exclusive access to a file descriptor, that routine must
-- % release the file descriptor beFORE exiting. Primary routines may call
-- % primary or secondary routines. Secondary routines are never visible
-- % outside the package. If a secondary routine references a file descriptor

-- % that routine assumes exclusive access for that descriptor. Secondary
- -- %.,.routines may only call other secondary routines. -All calls to BASIC 10

.-ftftorr.reading or writing are made by secondary routines. All other
-- % BASIC_10 calls are made by primary routines.

PRAGMA PAGE;

--* SPECIFICATION:

PACKAGE text io IS *

USE ada-rsl; _ *

TYPE file-type IS LIMITED PRIVATE;

TYPE filemode IS (in_file, outfile);

TYPE count IS RANGE 0 .. integer'LAST;

SUBTYPE positive count IS count RANGE 1. count'LAST;

unbounded : CONSTANT count : 0; -- line and page length

SUBTYPE field IS integer RANGE 0 .. integer'LAST;

SUBTYPE number-base IS integer RANGE 2 .. 16;

TYPE type set IS (lower case,uppercase);

-- File Management---

PROCEDURE create (file : IN OUT file type;
mode IN filemode out file;
name IN string :=
form IN string := 7:

PROCEDURE open (file : IN OUT file-type;
mode IN filemode;
name IN string;
form : IN string := "

PROCEDURE close (file : IN OUT file-type);

PROCEDURE delete (file : IN OUT file-type);

PROCEDURE reset (file : IN OUT file-type;
mode : IN filemode);

PROCEDURE reset (file : IN OUT filetype);

FUNCTION mode (file : IN filetype) RETURN filemode;

UNCTIONname (.._file-._IN .filetype,.).7RETURN string; .

FUNCTION form (file : IN filetype) RETURN string;

FUNCTION is-open (file : IN file-type) RETURN boolean;

-- Control of default input and output files---------------------------

PROCEDURE set-input (file : IN filetype);
PROCEDURE set_output (file : IN filetype);

FUNCTION standardinput RETURN filetype;

FUNCTION standard-output RETURN file_type;

FUNCTION currentinput RETURN filetype;
FUNCTION current output RETURN filetype;

-- Specification of line and page lengths-------------------------------

PROCEDURE set linelength (file : IN filetype;
to : IN count);

PROCEDURE setlinelength (to : IN count); -- for default output file

PROCEDURE setpagelength (file : IN filetype;
to : IN count);

PROCEDURE setpagelength (to : IN count); -- for default output fil
e

FUNCTION line-length (file : IN file type) RETURN count;

FUNCTION line length RETURN count; -- for default output file

FUNCTION page_length (file : IN filetype) RETURN count;

FUNCTION page length RETURN count;

-- Column, Line, and Page Control--

PROCEDURE newline " file IN filetype;
spacing : IN positivecount 1);

PROCEDURE newline (spacing : IN positivecount I);

PROCEDURE skipline (file : IN filetype;
spacing : IN positivecount 1);

PROCEDURE skipline (spacing : IN positivecount 1);

FUNCTION end of line (file : IN file type) RETURN BOOLEAN;

FUNCTION endofline RETURN boolean;

PROCEDURE newpage (file : IN filetype);

PROCEDURE new.page; -- default output file

PROCEDURE skippage (file : IN filetype);

aeOCEDUREwsk ip page;- default input file

FUNCTION end of_page (file IN filetype) RETURN boolean;

FUNCTION end of page RETURN boolean; -- default input file

FUNCTION end of file (file : IN filetype) RETURN boolean;

FUNCTION end of file RETURN boolean; -- default input file

PROCEDURE set col (file : IN filetype;

to r IN positive count);

PROCEDURE set col (to : IN positive count); -- for default ou
tput file

PROCEDURE set-line (file : IN file_type;
to : IN positive count);

PROCEDURE set-line (to : IN positive count); -- for default ou
tput file

FUNCTION col (file : IN filetype) RETURN positive count;

FUNCTION col RETURN positive count; -- for default ou
tput file

FUNCTION line (file : IN file type) RETURN positive count;

FUNCTION line RETURN positive-count; -- for default ou
tput file

FUNCTION page (file : IN file type) RETURN positive-count;

FUNCTION page RETURN positive-count; -- default output
file

-- CHARACTER input output---

PROCEDURE get (file : IN file type;
.. item : OUT character);

PROCEDURE get (item : OUT character);

PROCEDURE put (file : IN filetype;
item : IN character);

PROCEDURE put (item : IN character);

-- STRING input-output--

PROCEDURE get (file : IN file type;
item : OUT string);

PROCEDURE get (item : OUT string);

PROCEDURE put (file : IN file type;
item : IN string);

. _- PROCEDURE put. .(item._: IN string).

0 PROCEDURE getline (file : IN filetype;

item : OUT string;
last : OUT natural);

PROCEDURE get line (item : OUT string;

last : OUT natural);

PROCEDURE putline (file : IN filetype;
item : IN string);

PROCEDURE put line (item : IN string);

- Generic package for Input out of Integer Types

GENERIC
TYPE num IS RANGE.<>;

PACKAGE integer-to IS -- I N T E G E R _ 0
default-width : field := num'WIDTH;
default base : numberbase :- 10;

PROCEDURE get (file : IN file type;
item : OUT num;
width : IN field 0);

PROCEDURE get (item : OUT num;
width : IN field : 0);

PROCEDURE put (file : IN file type;
item : IN num;
width : IN field := default width;
base : IN number-base := defaultbase);

PROCEDURE put (item : IN num;
width : IN field := default width;
base : IN number-base := defaultbase)7

PROCEDURE get (from : IN-string;
item : OUT num;
last : OUT positive);

PROCEDURE put (to : OUT string;
item : IN num;
base : IN numberbase := defaultbase);

END integer io;

-- Generic packages for Input ouput of Real Type

GENERIC
TYPE num IS DIGITS <>;

PACKAGE float io IS
default-fore : field := 2;

,..in _ default aft..___field .:=,num'DIGITS :1l;

PROCEDURE get (file : in file type;
item : OUT num;
width : IN field := 0);

PROCEDURE get (item : OUT num;
width : IN field : 0);

PROCEDURE put (file : IN file type;
item : IN num;

fore z IN field : default fore;
aft : IN field defaultaft;
exp : IN field : default exp);

PROCEDURE put.(item : IN num;
fore : IN field default fore;
aft : IN field : default aft;
exp : IN field default exp);

PROCEDURE get- from : IN string;
item : OUT num;
last. : OUT positive);

PROCEDURE put (.TO : OUT string;
item. : IN num;
aft : IN field default aft;
exp : IN field defaultexp);

END float-io;

GENERIC
TYPE num IS DELTA <>;

PACKAGE fixedio IS
defaultfore : field num'FORE;.
defaultaft : field num'AFT:
defaultexp : field 0;

PROCEDURE get (file : IN filetype;
item. : OUT num;
width : IN field 0);

PROCEDURE get (item : OUT num;
width : IN field 0);

PROCEDURE put (file : IN file-type;
item : IN num;
fore : IN field defaultfore;
aft : IN field default aft;
exp : IN field default exp);

PROCEDURE put (item : IN num;
fore : IN field defaultfore;
aft : IN field defaultaft;
exp : IN field default exp);

.. PROCEDURE get(from ,IN string;.
- i tems.AqpyyZ. OUT nt;.-.

last : OUT positive):

PROCEDURE put (to : OUT string;

item : IN num;
aft : IN field defaultaft;

exp : IN field default-exp);

END fixedio;

--- -- -- ----- ini ---- ---n-- -------nl--m----i- ---i-- --i I

Generic package for Input Output of Enumeration Types

GENERIC
TYPE enum IS (>);

PACKAGE enumeration io IS
defaultwidth : field 0;
defaultsetting : typeset uppercase;

PROCEDURE get (file : IN file type;
item : OUT enum);

PROCEDURE get (item : OUT enum);

PROCEDURE put (file : IN file_type;
item : IN enum;
width : IN field default width;
set : IN typeset defaultsetting);

PROCEDURE put (item : IN enum;
width : IN field default width;
set : IN typeset default_setting);

PROCEDURE get (from : IN string;
item : OUT enum;
last :.OUT positive);

PROCEDURE put (to OUT string;
item IN enum;
set IN typeset := default setting);

END enumeration io;

-- Exceptions

statuserror : EXCEPTION RENAMES ioexceptions.statuserror;
modeerror : EXCEPTION RENAMES io exceptions.modeerror;
name_error :EXCEPTION RENAMES io-exceptions.name-error;
use -error : EXCEPTION RENAMES ioexceptions.use_error;
device error : EXCEPTION RENAMES ioexceptions.deviceerror;
end-error : EXCEPTION RENAMES io exceptions.end error;
dataerror : EXCEPTION RENAMES io exceptions.data_error;
layout_error : EXCEPTION RENAMES ioexceptions.layouterror;

II IR I VA E----

-PRIVATE

PRIVATE

-- REPRESENTATION OF TEXT 10 FILES:

-- This implementat-ion of TEXT_10 is for the Intel targets. For
-- input files, a variety of possible file formats are supported.
-- For output, a single canonical format corresponding to the format
- of DOS produced text files is used.

-- TEXT IO OUTPUT FILE FORMAT
- - - - - - - - - - - - - - -

-- file : page (eop page) eof

-- page ::= line (eol line)

-- line ::= (character)

-- eol :: ASCII.CR ASCII.LF

-- eop ASCII.FF

-- eof :: ASCII.SUB

-- character ::= any ASCII character except CR, LF, FF, and SUB

-- Note that for an output file, a physical line terminator ends
-- every line except the last line in each page. A physical page
-- terminator follows every page except the last page which is
-- terminated by the physical file terminator. The final page
-- terminator is omitted in keeping with common practice.

-- An empty physical file logically consists of an Ada line terminator
-- followed by a page terminator, followed by a file terminator.
-- A physical file containing only a form feed character logically consists
-- of two pages, each containing a single line empty line.

-- TEXT_10 INPUT FILE FORMATS

-. The_PHYSICAL syntax for an INPUT file is broad enough to accept a variety
ofpossible :text file.forms including some which are not produced by

-- TEXT_10. 'The following physical text patterns are interpreted as Ada
-- logical lines, pages and files by TEXT IO when reading files:

-- file :: page (eop page) eof

-- page ::= line (eol line)

-- line ::= (character)

-- eol ::= ASCII.CR ASCII.LF

i ASCII.CR

-- I ASCII.LF

-- eop :: ASCII.FF

- eof :: ASCII.SUB
I (end of data condition)

- character :: any character except ASCII: CR, LF, FF, SUB.

- Thus for an input file, a line may be explicity terminated by a carriage
- return/line feed pair, by carriage return alone, or by line feed alone.
-- An end of line is always implicit in a form feed or the physical end of
-- file.

-- A file may be explicitly terminated by a control Z character or
-- implicity when the end of input data is encountered. However, an
- embedded control Z character will be treated as the end of file even
-- though it may not be the physical end of data. The end of file is
-- always preceded by an implicit logical line terminator and page terminator.

-- The procedure READCHAR generates a page term character corressponding
-- tothe implicit page terminator which precedes the end for file.
-- The implicit LINETERMINATOR which precedes each page terminator is
-- not generated READCHAR.

-- In the implementation of TEXT_10, the code which interprets or
-- produces the physical file syntax has been isolated in the
-- following procedures:

-- readchar - gets the next input character or teminator.
-- end of line - checks if a line, page or file terminator is next.
-- endof page - checks if a page or file terminator follows.
• endof file - checks if a file terminator follows.

-- txtput char - output a logical character.
-- txt newline - starts a new line.
-- txtnew.page - starts a new page.
-- writechar - puts the next physical character.

-- Private Data:

bufferlength : CONSTANT := 256;

max line length : CONSTANT := buffer-length;

TYPE charbuffer IS ARRAY (integer RANGE l..bufferlength) OF character;

1I1 0.TYPE file ec°IS -common file state description; actual FILE TYPE
RECORD -- declarations will be access types to this record.

--#START PCDOS
--# stream : basic io.streamtype;
--# -- BASICIO file handle.

--#STOP PCDOS

--#START iAPX86, iAPXl86, iAPX286, iAPX286R, iAPX386R, iAPX286P, iAPX38
6P

stream io defs.stream-idyprv;

--#STOP iAPX86, IAPX186, iAPX286, iAPX286R, iAPX386R, iAPX286P, iAPX38
.6P

mode file-mode; -- INFILE or OUT-FILE.

curr-col : count :1 1; -- Next column to be read
-- or written.

currjline : count : i; -- Current line in page.
currpage : count : ; -- Current page in file.

line len : count := unbounded;
I ' . -- TEXT_10 line-length

pagelen : count :-.unbounded;

-- TEXT1 pagelength

curr_rec_length : integer 0; -- Index of last character in
,. in TEXTBUF (when reading)

textindex : integer 1; -- Index of next character in
-- TEXTBUF to be read or
-- written.

textbuf : char-buffer; -- Input/outpt buffer.
prevchar : character ASCII.NUL;

-- Previous character returned

-- by READ CHAR.
pending terminator : character ASCII.NUL;

. A terminator which has been
-- passed to WRITE CHAR but not

-- yet placed in the text buffer.
-- Value may be LINE TERM,
-- PAGE-TERM or ASCII.NUL

-- indicating no pending
-- terminator.

backup :boolean :=false;
-- True if TXT BACKUP has been

-- called to cause PREVCHAR to
-- be re-read.

at_eof : boolean :=false;
-- Set true when READCHAR sees
-- the end of file marker.

END RECORD;

TYPE file_type IS ACCESS filerec;

std input : filetype; -- the standard and current file descriptors
std output : filetype; -- should not be visible to the user except

w cu~r.input-. ._file-type;-through the provided procedure (see above).

i~turr output3, i f ile~t ype; rJ& ~.- ~ -

-- Define logical file marker values.

line term CONSTANT character :z ASCII.LF;
page term CONSTANT character ASCII.FF; -- form feed (ctrl-L) (16#0
C#)
file term CONSTANT character ASCII.SUB; -- (ctrl-Z) (16#1
A#)

TYPE character-set IS ARRAY (character) OF BOOLEAN;

- The TERMINATOR array is used to quickly determine whether a character is
- is a physical terminator.

terminator :CONSTANT character-set :=character-set'
(ASCII.CR
ASCII.LF
ASCII.FF .1
ASCII.SUB => TRUE,
OTHERS => FALSE);

-The SPACE -ETC array is used to quickly determine whether a character is
-to be skipped because its a space, tab, vertical tab, or terminator.

space-etc CONSTANT character-set character-set'

ASCII.HT
ASCII.VT
ASCII.CR
ASCII.LF
ASCII.FF
ASCII.SUB => TRUE,
OTHERS => FALSE);

END text-io;

W-0~~ P bwoI

WWVLEVELIO0

Include either the LOW LEVELJO package specification or the

following sentence:

Low-level input-output is not provided.
...

-- Copyright 1986 Softech, Inc., all rights reserved.

-- Copyright (C) 1987, SofTech, Inc.

with SYSTEM; use SYSTEM;
-- PACKAGE SPECIFICATION FOR LOWLEVELIO

-- * PURPOSE:

--% To support the programming of devices that can be accessed through ports
-- % in the memory space and the I/O space of the iAPXI86... Specific devices

-- % or device types that cannot be assumed to be present in all iAPX186-based
--% targets should be supported by specific packages (e.g., MPSC).

pragma PAGE; -- In package LOW LEVEL_10

--* SPECIFICATION:

package LOWLEVELIO is

--Support for I/O-mapped input and output:
procedure SEND CONTROL (DEVICE : in IOADDRESS; DATA : in out BYTE);
procedure SENDCONTROL (DEVICE : in 10_ADDRESS; DATA : in out WORD);
procedure RECEIVECONTROL(DEVICE : in IOADDRESS; DATA : in out BYTE);
procedure RECEIVECONTROL(DEVICE : in 1OADDRESS; DATA : in out WORD 1;

--Support for memory-mapped input and output:
procedure SEND CONTROL (DEVICE : in ADDRESS; DATA : in out BYTE);
procedure SENDCONTROL (DEVICE : in ADDRESS; DATA : in out WORD);
procedure RECEIVE CONTROL(DEVICE : in ADDRESS; DATA : in out BYTE);
procedure RECEIVECONTROL(DEVICE : in ADDRESS; DATA : in out WORD);

end LOWLEVELIO;

S -- . '.. . 7 .- -r-. ' --*"

I'V I I IvII IIII II v i • . •VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV b=

-rvvvvvvvvvvvvvvvvvvwvvvwwvvvvwvvvvvvvvvvvvvvvvvvwvvvvvvvvvvvvvvvvvvvvvvvv

(9) Package STANDARD

-- Copyright (C) 1986, SofTech, Inc.

PACKAGE standard IS

The Package STANDARD contains the following (implementation specific)
definitions in addition to those specified in Annex C of the LRM:

TYPE integer IS RANGE -32_768 .. 32_767;

FOR integer'SIZE USE 16;

TYPE long_integer IS RANGE -2_147_483_648 .. 2_147_483_647;

TYPE float IS DIGITS 6 RANGE
-(2*1.Ii1_1111_111_1111_1111_ii11#E+127) .
-(2#1.111 1111_1111_1111 1111 #llllE+127);

-- Type float is realized using the Intel machine type SHORT REAL.
-- SHORT REAL provides 24 bits of mantissa (one bit is implied),
-- and it provides 8 bits for a biased exponent. However only the values
-- 1..254 are exponents of normalized numbers. The bias is 127, so the
-- exponent range is -126..127.

-- This leads to the following attributes for the type float:
-- float'digits = 6 [LRM 3.5.7, 3.5.81
-- float'mantissa = 21 [LRM 3.5.7, 3.5.8]

-- float'emax = 84 (LRM 3.5.81
-- float'epsilon = 2.0 ** (-20) [LRM 3.5.81

= 2#1.000_0000 0000_0000_0000_0000#E-20
= 16#0.100000#E-4

-- float'small = 2.0 ** (-85) [LRM 3.5.81
= 2#1.000 0000 0000_0000_0000_0000#E-85
= 16#0.800_000 0#E-21

-- float'large = (2.0 ** 84) * (1.0 - 2.0 ** (-21)) [LRM 3.5.8]
= 2#1.111_1111_1111_1111_1111_1#E+83
= 16#0.FFF FF8_0#E+21

-- float'safe emax = 127 [LRM 3.5.7, 3.5.8]

-- float'safe small = 2.0 ** (-126) tLRM 3.5.71
______________________________ _.. 2#1.00000000000_0000_0000_0000#E-126

• -----------------------.. ,=,,16#0.400 000#E-31 ".'*a

- " loat'safelarge = (2.0 ** 128) * (1.0 - 2.0 ** (-21)) (LRM 3.5.71
= 2#1.111 1111 1111_1111_11111_#E+127
= 16#0.FFF FF8#E+32

-- float'first = -float'last

-- float'last = (2.0 ** 128) * (1.0 - 2.0 ** (-24))

= 2#1.11 111 _1111_iiiiiii#E+127
= 16#0.FFF FFF#E+32

- 3.40_282_347E*38

-- floatlmachine radix = 2

-- tleat'machine mantissa = 24

-float'machine-emax = 127
-- float'machine emin -- 126

- float'machine rounds = true
-- float machine overflows = true

TYPE-long float IS DIGITS 15 RANGE
-2#1.111 1111_1111_1111_1111_1111_111111j111-11111_Illj1ll1111_IIE+1023
2#1.111 1111 1111 1111_1111_1111-1111_1111_1111_1111_1111_1111_1111_1#E+1023;

- Type long float is realized using the Intel machine type LONG REAL.
-- LONG REAL provides 53 bits of mantissa (one bit is implied),
-- and it provides 11 bits for a biased exponent. However only the values

l . .2046 are exponents of normalized numbers. The bias is 1023, s0 the
-- exponent range is -1022. .1023.
-- This leads to the following attributes for the type float:

-- long float'digits = 15 (LRM 3.5.7, 3.5.8]
-- long float'mantissa = 51 (LRM 3.5.7, 3.5.81

-- long-float'emax = 204 [LRM 3.5.81
-- long float'epsilon = 2.0 ** (-50) (LRM 3-5.81

= 16#0.400_000_000_000_00#E-12
-8.88_178_197_001_254E-16

-- long_float'small = 2.0 7* (-205) [LRM 3.5.83
--=211.0000000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000OI#E-2OS

=16#0.800_000_000_000_00#E-51

* - - 1.94_469_227_433_161E-16
-- long float'large = (2.0 **204) * (1.0 - 2.0 ** (-51)) CLRM 3.5.81

--=211.111_1111.1111_1-111_1111_1111_1111_1111_1111_1111_1111_1111_1110 0#E4204
* = 1610.FFFFFF-FFFFFFE01E+51

-2.57_110_087_081_438E+61

-- long float'safe -emax = 1023 [LRM 3.5.7, 3.5.8]
-- long float'safe-small = (2.0 ** (-1022)) (LRM 3.5.7]

-=211.000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_0000_01E-1022

=16#4.000 -000_-000_000_00#E-256
-2.22 507 385850_720E-308

-- long float'safe_large = (2.0 **1024) * (1.0 - 2.0 ** (-51)) (LRM 3.5.7]

=16#0.FFFFFFFFFFFFC#E+256

1.79_768_713_486_232E+308
-- long_float'first =-long float'last
-- long float'last

=16#0.FFFFFFFFFFFFF#E+256

-1.79_768_713_486_232E+308

-- long_float'machine-radix = 2
-- long_float'machine -mantissa = 53

-- long floatimachine-emax = 1023
-- long flotachineemin = -1022

-- long float'machine-overflows = true

FOR character'SIZE USE 8;

TYPE duration IS DELTA 2.0 ** (-14) RANGE -131_072.0 .. 131_072.0

END standard;

vv
(10) File names

As SEQUENTIAL_10 and DIRECT 10 are not supported on the target(s),
there are no file name conventions on the target configuration(s).

S. -- . . .

-. Wi.a4
,.-iiil

-
.ln-N

W

-- FAST INTERRUPT ENTRIES --

--Prompt Interrupt Entry:

PROMPT
--This is a Fast Interrupt Entry, invoked by an interrupt other than
--NMI or Single Step, whose accept body receives control after an
--interrupt more quickly than an ordinary interrupt entry but more
--slowly than a Quick or a Non-Maskable Interrupt Entry. The accept
--body may make conditional entry calls to entries that have been
--declared to be Trivial Entries by means of the pragma
--TRIVIALENTRY.

--When this kind of interrupt entry occurs, the state of the 8087
--Numeric Data Processor will always be saved as part of the context
--of the interrupted task, because the normal task-switching
--mechanism will attempt to restore it before resuming the
--interrupted task.

.--Note: In the. following constant namesol "NDP" stands for "Numeric Data
--Processor," i.e., the Intel 8087.

--Quick Interrupt Entries:

SIMPLE-QUICK
--This is a Quick Interrupt Entry, invoked by an interrupt other than
--NMI or Single Step, whose accept body makes no entry calls.

NONDPSIMPLEQUICK
--This is a Quick Interrupt Entry, invoked by an interrupt other than
--NMI or Single Step, whose accept body makes no entry calls.

--It differs from SIMPLE QUICK only in that the state of the 8087
--Numeric Data Processor is neither saved nor restored during
--interrupt delivery.

SIGNALLING QUICK
--This is a Quick Interrupt Entry, invoked by an interrupt other than
--NMI or Single Step, whose accept body may make conditional entry
--calls to entries that have been declared to be Trivial Entries by
--means of the pragma TRIVIALENTRY.

- kind ofinterrupt entry occurs, the state of the 8087
--Numeric Data Processor will always be saved as part of the context
--of the interrupted task, because the normal task-switching
--mechanism will attempt to restore it before resuming the
--interrupted task.

--Non-Maskable Interrupt Entries:

NONMASKABLE

APPE2NDIX C

TETPARA1-ETERS

certain tests in the ACVC make use of inplentatid:ez t values,
such as the maximum length of an input line and invalid file names. A
test that makes use of such values is identified by the extension .T
in its file name. Actual values to be substituted are represented by
names that begin with a dollar sign. A value must be substituted for
each of these names before the test is run. The values used for this
validation are given below.

Name and Meaning Value

$BIGID1 <1..119 => 'A', 120 => 'I'>
Identifier the size of the
maxirum input line length with
varying last character.

$BIG ID2 <1..119 => 'A', 120 => '2'>
Identifier the size of the
maximum input line length with
varying last character.

$BIG ID3 <1..59 => 'A', 60 => '3',
Identifier the size of the 61..120 => 'A'>
maxim= input line length with
varying middle character.

SBIG ID4 <1..59 => 'A', 60 => '4',
Identifier the size of the 61..120 => 'A'>
maxim= input line length with
varying middle character.

$BIG IMT LIT <1..117 => '0', 118.-120 =>
An integer literal of value 298 '298'>
with enough leading zeroes so
that it is the size of the
maximrm line lenqth.

$BIG REAL LIT <1. .114 => '0', 115. 120 =>
A universal real literal of '69.OEl' >
value 690.0 with enough leading
zeroes to be the size of the
mnaximrum line length.

C-1

$BIG ST I <1..60 => WA>

A string literal which when
catenated with BIG STRING2
yields the image of BIG IDI.

$BIGSING2 - <1..59 => W, 60 => 'A'>
A string literal which when
catenated to the end of
BIG_SIRING1 yields the inage of
BIG_Il.

$BIAN <1..100 => ' '>
A sequence of blanks twenty
characters less than the size
of the maxinum line length.

$CUNT _AST 2_147_483_647
A universal integer literal
whose value is
TEXTO. MCNT' LAST.

$FIEA LASr 2_147_483_647
A universal integer
literal whose value is
TEXT IO. FIELD' Ar.

$FIIENAM _WIH BAD CHAM BAD-C ZS- #.%.'X
An external file name that
either contains invalid
characters or is too long.

$FIIE NAM _rILHWIL CARD_ AR WI-A*.NAM
An etrnal file name that
either contains a wild card
character or is too long.

$G -EA _ 'I DURATION 75000.0
A universal real literal that
lies between DURATION ' BASE' LAST
and DURATION'LAST or any value
in the range of DURATION.

$GREATER_11W ARATIONBASELAST 131_073.0
A universal real literal that is
greater than DURATION ' BASE ' LAST.

$ILUaAL EXTEEMAL LE _NAMEl BADCHAR^@.-:
An external- file name which
contains invalid characters.

C-2

$IUA E=M~rLFILE NAME2 nmIs-FILE-NAmE-mMw-BE-PERFBcr
An external file name which -IEAIBIF-1T-WE -NT-SO-LCW-
is too long. IT-HAS-NEARLY-NE-SIXT-

CHARACTES

$inMDME - -FE -2_147483_648
A universal integer literal
whose value is INI 'ER' ST.

$SlTVGERIASI 2_147_483_647
A universal integer literal
whose value is IRITGER'IASr.

$]I1IER _IASr PLUS_1 2_147_483_648
A univeisal integer literal
whose value is qIsrM'IASr + 1.

$LESSTHAN _RA I N -75000.0
A universal real literal that
lies between DURATION'BASE' F=ST
and LURATION'FIRST or any value
in the range of DURATION.

$LESS_'flINDURATIONBASEFIST -131_073.0
A-universal real literal that is
less than DURATIONBASE' FIrST.

$MAX DIGITS 15
Maximum digits supported for
floating-point types.

$MAX INJEN 120
Maximum inpuit line length
permitted by the inplementation.

$MAX_INT 2147483647
A universal integer literal
whose value is SYSTEM.MAX INT.

$MAX INTTPLUS_1 2_147_483_648
A universal integer literal
whose value is SYSrE2.MAX_INT+1.

$MAX_LEN INrBASEDLTERAL <1..2 => '2:', 3..117 =>
A universal integer based '0', 118..120 => 'I1: '>
literal whose value is 2#11#
with enough leading zeroes in
the mantissa to be MAX INLEN
long.

C-3

% XEN EAILBASEDLUTERAL <1.. 3 => '16:', 4..116 =>
A universal real based literal 10', 117..120 => 'F.E:'>
whose value is 16:F.E: with
enough leading zeroes in the
mantissa to -be MAX_INLEN long.

$MAX STRING LITERAL <1 => "' 2.119 => 'A',
X str ing literal of size 120 => "">

MAXMnLN, including the quote
characters.

$ M INT -2147483_648
A universal integer literal
whose value is SYSTEN.M INT.

$NAME NoSuc-7 Pe
A name of a predefined numeric
type other than FLoAT, NTER,
SHORT FLOAT, SHOR INEER
IONG_FLOAT, or LONG_.INTER.

$NEGBASED_ INT 16#FFFFFF#
A based integer literal whose
highest order nonzero bit
falls in the sign bit
position of the representation
for SYSTEM.MAX INT.

C-4

APPENDIX D

Some tests are withdrawn fram the ACVC because they do not conform to
the Ada Standard. The foloing 28 tests had been withdrawn at the time
of validation testing for the reasons indicated. A reference of the
form "AI-ddddd" is to an Ada Carmntary.

B28003A: A basic declaration (line 36) wrongly follows a later
declaration.

E28005C: This test requires that 'PRAGMA LIST (ON);' not appear in a
listing that has been suspended by a previous 'pragma LIST
(OFF) ;"; the Ada Standard is not clear on this point, and the
matter will be reviewed by the ARG.

C34004A: The expression in line 168 wrongly yields a value outside of
the range of the target type T, raising CNSTRAINTERROR.

C35502P: Equality operators in lines 62 & 69 shculd be inequality
operators.

A35902C: Line 17's assignment of the rnmimal upper bound of a
fixed-point type to an object of that type raises
CONSTRAINTERROR, for that value lies outside of the actual
range of the type.

C35904A: The elaboration of the fixed-point subtype on line 28 wrongly
raises CONSTRAINTERROR, because its upper bound exceeds that
of the type.

C35904B: The subtype declaration that is expected to raise
CONSTRAINTERROR when its ccmpatibility is checked against that
of various types passed as actual generic parameters, may in
fact raise NUMERIC ERROR or OONSTRAINT ERROR for reasons not
anticipated by the test.

C35A03E, These tests ass--nme that attribute 'MANTISSA returns 0 when
& R: applied to a fixed-point type with a null range, but the Ada

Standard doesn't support this assumption.

C37213H: The subtype declaration of SCONS in line 100 is wrongly
expected to raise an exception when elaborated.

C37213J: The aggregate in line 451 wrongly raises CONSIRAINf_ERROR.

D-1

C37215C, Various discriminant constraints are wrongly expected
E, G, H: to be inccmpatible with type CONS.

C38102C: The fixed-point conversion on line 23 wrongly raises
ONSTRAINTER RR.

C41402A: 'STORAGESIZE is wrongly applied to an object of an access
type.

C45332A: The test expects that either an expression in line 52 will
raise an exception or else MAa mE_OVERFOWS is FALSE.
However, an implementation may evaluate the expression
correctly using a type with a wider range than the base type of
the operands, and MACQINE_0VERF may still be TRJE.

C45614C: REPORT.IDENTINT has an argument of the wrong type

E66001D: Wrongly allows either the acceptance or rejection of a
parameterless function with the same identifier as an
enumeration literal; the function must be rejected (see
Cml*xrtary AI-00330).

A74106C, A bound specified in a fixed-point subtype declaration
C85018B, lies outside of that calculated for the base type, raising
C87B04B, CONSTRAINT ERROR. Errors of this sort occur re lines 37 & 59,
CCI311B: 142 & 143, 16 & 48, and 252 & 253 of the four tests,

respectively (and possibly elsewhere).

BC3105A: Lines 159..168 are wrongly expected to be illegal; they are
legal.

ADlA01A: The declaration of subtype INT3 raises CONSTRAINT ERROR for
implementations that select INT'SIZE to be 16 or greater.

CE2401H: The record aggregates in lines 105 & 117 contain the wrong
values.

CE3208A: This test expects that an attempt to open the default output
file (after it was closed) with mode IN FILE raises NAM ERROR
or USEERROR; by Caitentary AI-00048, -MZDEERRCR should be
raised.

D-2

